|   | 
Details
   web
Records
Author (down) Nakazawa, H.
Title Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge Type Journal Article
Year 2006 Publication Sohn International Symposium Advanced Processing of Metals and Materials, Vol 9 Abbreviated Journal
Volume Issue Pages 373-381
Keywords mine water treatment arsenic biotechnology filtration iron membranes microorganisms mining industry oxidation sludge treatment acid mine drainage arsenic ion sludge treatment Horobetsu mine Hokkaido Japan ferrous iron membrane filter pore size arsenite solutions microbial oxidation As Fe Manufacturing and Production
Abstract An acid mine drainage in abandoned Horobetsu mine in Hokkaido, Japan, contains arsenic and iron ions; total arsenic ca.10ppm, As(III) ca. 8.5ppm, total iron 379ppm, ferrous iron 266ppm, pH1.8. Arsenic occurs mostly as arsenite (As (III)) or arsenate (As (V)) in natural water. As(III) is more difficult to be remove than As(V), and it is necessary to oxidize As(III) to As(V) for effective removal. 5mL of the mine drainage or its filtrate through the membrane filter (pore size 0.45 mu m) were added to arsenite solutions (pH1.8) with the concentration of 5ppm. After the incubation of 30 days, As(III) was oxidized completely with the addition of the mine drainage while the oxidation did not occur with the addition of filtrate, indicating the microbial oxidation of As(III). In this paper, we have investigated the microbial oxidation of As(III) in acid water below pH2.0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-87339-642-1 ISBN Medium
Area Expedition Conference
Notes Aug 27-31; Treatment of acid mine drainage containing iron ions and arsenic for utilization of the sludge; Isip:000241817200032; Conference Paper Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17456 Serial 151
Permanent link to this record
 

 
Author (down) Mitchell, P.; Wheaton, A.
Title From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage Type Book Chapter
Year 1999 Publication Sudbury '99; Mining and the environment II; Conference proceedings Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Bunker Hill Mine cost decontamination Idaho metal ores mines mitigation natural resources pollution reagents recovery Shoshone County Idaho sludge United States zinc ores 22 Environmental geology 27A Economic geology, geology of ore deposits
Abstract Acid rock drainage remains the greatest environmental issue faced by the mining sector and as the new millennium approaches, low capital/operating cost treatments remain elusive. Therefore as part of an ongoing process to develop a leading edge, innovative and cost-effective approach, pilot trials were conducted by KEECO in collaboration with the New Bunker Hill Mining Company on a substantial and problematic metal-contaminated acid flow, emanating from underground workings at the Bunker Hill Mine, Idaho. The aims of the work were fourfold. First to assess the capacity of KEECO's unique Silica Micro Encapsulation (SME) reagents and associated dosing systems to cost-effectively decontaminate the acid flow to stringent standards set by the U.S. Environmental Protection Agency (USEPA), where alternative and standard technologies had failed. Second, to demonstrate that treatment using a compact system suitable for underground installation. Third, to demonstrate that the treatment sludge had enhanced chemical stability in absolute terms and relative to standard approaches. Fourth, to examine the potential for resource recovery via sequential precipitation. Although the focus to date has been the development of a cost-effective treatment technology, the latter aim was considered essential in light of the growing pressure on all industrial sectors to develop tools for environmentally sustainable economic growth and the growing demands of stakeholders for improved resource usage and recycling. Two phases of work were undertaken: a laboratory-based scoping exercise followed by installation within the mine workings of a compact reagent delivery/shear mixing unit capable of treating the full flow of 31 L s (super -1) . At a dose rate of 2.0 g L (super -1) (equivalent to a final treated water pH range of 7-9), the SME reagent KB-1 reduced metal concentrations to levels approaching the U.S. Drinking Water Standards, which no other treatment piloted at the site had achieved. Based on the USEPA's Toxicity Characteristic Leaching Procedure, the sludge arising from the treatment was classified as non-hazardous. Operating costs compared favourably with those of lime use, while estimated capital costs were considerably lower due to the compact nature of the reagent delivery system and the rapid settling characteristics of the treatment sediment. Resource recovery was attempted using a two-stage selective precipitation approach. The first stage involved pH adjustment to 5.5 (by addition of 1.5 g L (super -1) of KB-1) to produce a sludge enriched in aluminium, iron and manganese, with lesser amounts of arsenic, nickel, lead and zinc. Further KB-1 addition to a total of 2.1 g L (super -1) generated sludge enriched in zinc (33% by dry weight), demonstrating that resource recovery is theoretically feasible. Further work on downstream processing is required, although it is considered that the most likely route for zinc metal recovery will be high temperature/pressure due to the chemically inert nature of the zinc-rich sediment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Goldsack, D.E.; Belzile, N.; Yearwood, P.; Hall, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0886670470 Medium
Area Expedition Conference
Notes From environmental burden to natural resource; new reagents for cost-effective treatment of, and metal recovery from, acid rock drainage; GeoRef; English; 2000-048642; Sudbury '99; Mining and the environment II, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 3; illus. incl. 5 tables Approved no
Call Number CBU @ c.wolke @ 16593 Serial 296
Permanent link to this record
 

 
Author (down) Kuyucak, N.; Lindvall, M.; Rufo Serrano, J.A.; Oliva, A.F.
Title Type Book Whole
Year 1999 Publication Abbreviated Journal
Volume Issue Pages 473-479
Keywords HDS lime sludge mine water treatment
Abstract Lime neutralization is a frequently used method in the mining industry for the treatment of acid waters. These waters contain metal ions such as zinc, manganese, copper, cadmium, lead, etc. The conventional, straight lime neutralization technology generates a Low Density Sludge (LDS) having only 1-2% solids content. This creates sludge disposal difficulties, and results in the loss of potentially large quantities of recovered water, which in turn increases the demand for fresh water requirements for mining/milling activities. The High Density Sludge (HDS) process, on the other hand, is the state-of-the-art technology in North America. It generates a dense sludge with less volume and better particulate properties. Furthermore, the typical gelatinous nature of the sludge changes to a granulated, sand-like texture. Boliden Apirsa, S.L. investigated the feasibility of an HDS process to increase the treatment capacity of their existing plant, and resolve the issues associated with the LDS process for their Los Frailes project. The project required, given that the production of ore was going to be doubled, a significant increase in water was needed without altering the water reservoir sitting north of the concentrator. In addition, the final effluent quality was a priority issue. First, a pilot-scale study was undertaken in 1996, and parameters critical to the design and performance of the process were determined. The results showed that the HDS process could significantly improve the sludge characteristics by increasing the solids fraction from 1.5 to 12.0%, thereby decreasing the sludge volume to be disposed to the tailings ponds by a factor of 10. A full-scale, HDS lime neutralization treatment plant for an average flow rate of 1500 m3/hr was designed and was commissioned in early 1998 in collaboration with Colder Associates, Ottawa, Canada. So far, the full-scale treatment plant has been generating a sludge with more than 30% solids content, exceeding its target value of 12% solids. It produces excellent effluent quality, and scaling in the handling equipment is virtually eliminated. The sludge has dense, easily settable granular particles rather than fluffy flocs, yet has low viscosity that facilitates its unassisted gravity flow. The process has resulted in an increase in the treated water volume. The rate of lime consumption per unit volume of water treated also decreased. The process principles and the steps taken in process development will be discussed and the results obtained to date will be summarized in this communication.
Address
Corporate Author Thesis
Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.
Language Summary Language Original Title
Series Editor Series Title Mine, Water & Environment Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Implementation of a High Density Sludge “HDS” Treatment Process at the Boliden Apirsa Mine Site; 1; VORHANDEN | AMD ISI | Wolkersdorfer; FG als Datei vorhanden 4 Abb., 4 Tab. Approved no
Call Number CBU @ c.wolke @ 9751 Serial 322
Permanent link to this record
 

 
Author (down) Kuyucak, N.
Title Mining, the Environment and the Treatment of Mine Effluents Type Journal Article
Year 1998 Publication Int. J. Environ. Pollut. Abbreviated Journal
Volume 10 Issue 2 Pages 315-325
Keywords mine water treatment acid mine drainage high density sludge lime neutralization mining environment passive treatment sulfate-reducing bacteria
Abstract The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning. In particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterized by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4352 ISBN Medium
Area Expedition Conference
Notes Mining, the Environment and the Treatment of Mine Effluents; Isi:000078420600009; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17477 Serial 56
Permanent link to this record
 

 
Author (down) Kuyucak, N.
Title Acid mine drainage; treatment options for mining effluents Type Journal Article
Year 2001 Publication Mining Environmental Management Abbreviated Journal
Volume 9 Issue 2 Pages 12-15
Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5723 Serial 324
Permanent link to this record