|   | 
Details
   web
Records
Author (down) Swoboda-Colberg, N.; Colberg, P.; Smith, J.L.
Title Constructed vertical flow aerated wetlands Type RPT
Year 1994 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; aeration; Butte Montana; carbonate rocks; case studies; clastic sediments; Clear Creek County Colorado; Colorado; construction; controls; fluid dynamics; gravel; heavy metals; Idaho Springs Colorado; limestone; Montana; pollution; rates; sedimentary rocks; sediments; Silver Bow County Montana; substrates; tailings; United States; waste water; water; water management; water quality; water treatment; wetlands 22, Environmental geology
Abstract In the report, wetland technology is described in which the main reactive layer is limestone gravel (rather than organic material) which is overlain by a fine gravel filter and soil. The three-year project included laboratory and field studies. Vertical aerated wetlands, simulated by columns, constructed in the field and in the laboratory, were operated during the project. The report presents a summary of results given in previous reports and summaries of results obtained using water from Butte, MT, and field studies at the Rockford Tunnel, near Idaho Springs, CO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor University of Wyoming, L.W.Y.U.S. performer Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructed vertical flow aerated wetlands; 1998-003373; GeoRef; English; Final report. Grant DI-196561 National Technical Information Service, (703)605-6000, order number PB96-196811NEG, Springfield, VA, United States Approved no
Call Number CBU @ c.wolke @ 6506 Serial 226
Permanent link to this record
 

 
Author (down) Swayze, G.A.
Title Imaging spectroscopy: A new screening tool for mapping acidic mine waste Type Journal Article
Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal
Volume Issue Pages 1531-+
Keywords mine water treatment
Abstract Imaging spectroscopy is a relatively new remote sensing tool that provides a rapid method to screen entire mining districts for potential sources of surface acid drainage. An imaging spectrometer known as the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) measures light reflected from the surface in 224 spectral channels from 0.4 – 2.5 mum. Spectral data from this instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, Colorado. Here, the process of pyrite oxidation at the surface produces acidic water that is gradually neutralized as it drains away from mine waste, depositing a central jarosite zone surrounded by a jarosite + goethite zone, in turn surrounded by a goethite zone with a discontinuous hematite rim zone. Leaching tests show that pH is most acidic in the jarosite and jarosite+goethite zones and is near-neutral in the goethite zone. Measurements indicate that metals leach from minerals and amorphous materials in the jarosite + goethite and jarosite zones at concentrations 10 – 50 times higher than from goethite zone minerals. Goethite zones that fully encircle mine waste may indicate some attenuation of leachate metals and thus reduced metal loading to streams. The potential for impact by acidic drainage is highest where streams intersect the jarosite and jarosite + goethite zones. In these areas, metal-rich acidic surface runoff may flow directly into streams. The U.S. Environmental Protection Agency estimates (U.S. EPA, 1998) that mineral maps made from AVIRIS data at Leadville have accelerated remediation efforts by two years and saved over $2 million in cleanup costs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Imaging spectroscopy: A new screening tool for mapping acidic mine waste; Isip:000169875500152; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17111 Serial 164
Permanent link to this record
 

 
Author (down) Stoica, L.; Dima, G.
Title Pb(II) removal from aqueous systems by biosorption-flotation on mycelial residues of Penicillium chrysogenum Type Book Chapter
Year 2000 Publication 7th international Mine Water Association congress; Mine water and the environment Abbreviated Journal
Volume Issue Pages 472-481
Keywords bioremediation; flotation; ground water; lead; metals; Penicillium; Penicillium chrysogenum; pollution; remediation; sorption; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Uniwersytet Slaski Place of Publication Sosnowiec Editor Rozkowski, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 8387431230 Medium
Area Expedition Conference
Notes Pb(II) removal from aqueous systems by biosorption-flotation on mycelial residues of Penicillium chrysogenum; GeoRef; English; 2002-018169; 7th international Mine Water Association congress; Mine water and the environment, Katowice-Ustron, Poland, Sept. 11-15, 2000 References: 6; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 5852 Serial 228
Permanent link to this record
 

 
Author (down) Stewart, D.; Norman, T.; Cordery-Cotter, S.; Kleiner, R.; Sweeney, E.; Nelson, J.D.
Title Utilization of a ceramic membrane for acid mine drainage treatment Type Journal Article
Year 1997 Publication Tailings and Mine Waste '97 Abbreviated Journal
Volume Issue Pages 453-460
Keywords acid mine drainage; Black Hawk Colorado; Central City Colorado; ceramic materials; Colorado; cost; disposal barriers; geochemistry; Gilpin County Colorado; heavy metals; mines; organic compounds; pollution; remediation; surface water; tailings; United States; utilization; volatile organic compounds; volatiles; waste disposal mine water treatment
Abstract BASX Systems LLC has developed a treatment system based on ceramic membranes for the removal of heavy metals from an acid mine drainage stream. This stream also contained volatile organic compounds that were required to be removed prior to discharge to a Colorado mountain stream. The removal of heavy metals was greater than 99% in most cases. A decrease of 30% in chemicals required for treatment and a reduction by more than 75% in labor over a competing technology were achieved. These decreases were obtained for operating temperatures of less than 5 degrees C. This system of ceramic microfiltration is capable of treating many different types of acid mine waste streams for heavy metals removal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 90-5410-857-6 ISBN Medium
Area Expedition Conference
Notes Jan 13-17; Utilization of a ceramic membrane for acid mine drainage treatment; Isip:A1997bg96u00050; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8744 Serial 135
Permanent link to this record
 

 
Author (down) Smyth, D.J.A.; Blowes, D.W.; Benner, S.G.; Hulshof, A.M.; Nelson, J.D.
Title In situ treatment of groundwater impacted by acid mine drainage using permeable reactive materials Type Book Chapter
Year 2001 Publication Proceedings of the Eighth international conference on Tailings and mine waste '01 Abbreviated Journal
Volume Issue Pages 313-322
Keywords acid mine drainage; environmental management; ground water; in situ; permeability; pollution; reclamation; sulfate ion; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9058091821 Medium
Area Expedition Conference
Notes In situ treatment of groundwater impacted by acid mine drainage using permeable reactive materials; GeoRef; English; 2003-003552; Tailings and mine waste '01, Fort Collins, CO, United States, Jan. 16-19, 2001 References: 19; illus. Approved no
Call Number CBU @ c.wolke @ 5770 Serial 236
Permanent link to this record