toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Jong, T. url  openurl
  Title Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor Type Journal Article
  Year 2006 Publication Water Research Abbreviated Journal  
  Volume 40 Issue 13 Pages 2561-2571  
  Keywords mine water treatment  
  Abstract The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor; Wos:000239469400012; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16929 Serial 108  
Permanent link to this record
 

 
Author (down) Jarvis, A.P. url  openurl
  Title Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK Type Journal Article
  Year 2006 Publication Environmental Pollution Abbreviated Journal  
  Volume 143 Issue 2 Pages 261-268  
  Keywords mine water treatment  
  Abstract A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH < 4, [acidity] > 1400 mg/L as CaCO3, [Fe] > 300 mg/L, [Mn] > 165 mg/L, [Al] > 100 mg/L and IS041 > 6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK; Wos:000238277500010; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16928 Serial 109  
Permanent link to this record
 

 
Author (down) Janneck, E.; Schlee, K.; Arnold, I.; Glombitza, F. openurl 
  Title Einsatz neuer Belüftungssysteme zur Effizienzsteigerung bei der Grubenwasserbehandlung in der Lausitz Type Journal Article
  Year 2006 Publication Wissenschaftliche Mitteilungen Abbreviated Journal  
  Volume 31 Issue Pages 29-35  
  Keywords Grubenwasser Grubenwasserreinigungsanlage Schwarze Pumpe Eisenabtrennung Belüftung  
  Abstract Im Beitrag wird über Erfahrungen und Ergebnisse berichtet, wie durch den Einsatz neuer Belüftungssysteme eine deutliche Stabilisierung des Prozesses der Eisenabtrennung in der GWRA Schwarze Pumpe erreicht wurde. Erstmals wurden im Lausitzer Revier Wendelbelüfter im Prozess der Grubenwasserreinigung eingesetzt. Unter Bedingungen, bei denen die Sauerstoffdiffusion der geschwindigkeitsbestimmende Schritt ist, bewirken diese Geräte eine deutliche Beschleunigung der Eisenoxidation. Als zusätzliche Effekte, die zur Effizienzsteigerung der Grubenwasserbehandlung beitragen, können eine wesentliche Durchsatzsteigerung, eine bessere Kalkausnutzung sowie eine deutlich verbes-serte Schlammeindickung genannt werden. The article presents experiences and results of the application of new aerator-systems in the mine water treatment. The processes of ferrous iron oxidation and sludge removal became more stable and efficiently by the application of the aerators. For the first time, spiral aerators were used in the Lower Lusatia lignite mining district to clean ferrous iron containing mine water. These devices lead to an enhanced iron oxidation rate under the existing conditions, where the oxygen diffusion is the rate determining step. Furthermore, the application caused increased throughput, optimal lime utilisation and better sludge thickening, which led to a higher efficiency of the mine water treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-1284 ISBN Medium  
  Area Expedition Conference  
  Notes Einsatz neuer Belüftungssysteme zur Effizienzsteigerung bei der Grubenwasserbehandlung in der Lausitz; 1; FG 'aha' 5 Abb., 1 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17357 Serial 341  
Permanent link to this record
 

 
Author (down) Hulshof, A.H.M.; Blowes, D.W.; Douglas Gould, W. url  openurl
  Title Evaluation of in situ layers for treatment of acid mine drainage: A field comparison Type Journal Article
  Year 2006 Publication Water Res Abbreviated Journal  
  Volume 40 Issue 9 Pages 1816-1826  
  Keywords mine water Pollution and waste management non radioactive Groundwater problems and environmental effects acid mine drainage organic carbon oxidation microbial activity drainage groundwater pollution Bacteria microorganisms Contamination Groundwater Barriers Drainage Treatment  
  Abstract Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1 a-1, (5.2 mmol L-1 a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased δ13CDIC values from -3‰ to as low as -12‰ indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1 a-1 (52 mmol L-1 a-1), Fe concentrations decreased by 80–99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased δ13CDIC values, to as low as -22‰, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes May; Evaluation of in situ layers for treatment of acid mine drainage: A field comparison; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10040.pdf; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 10040 Serial 49  
Permanent link to this record
 

 
Author (down) Fisher, T.S.R.; Lawrence, G.A. url  openurl
  Title Treatment of acid rock drainage in a meromictic mine pit lake Type Journal Article
  Year 2006 Publication Journal of environmental engineering Abbreviated Journal  
  Volume 132 Issue 4 Pages 515-526  
  Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) meromictic lake acid mine drainage mine waste copper water pollution Bacteria microorganisms Canada Vancouver Island British Columbia North America  
  Abstract The Island Copper Mine pit near Port Hardy, Vancouver Island, B.C., Canada, was flooded in 1996 with seawater and capped with fresh water to form a meromictic (permanently stratified) pit lake of maximum depth 350 m and surface area 1.72 km2. The pit lake is being developed as a treatment system for acid rock drainage. The physical structure and water quality has developed into three distinct layers: a brackish and well-mixed upper layer; a plume stirred intermediate layer; and a thermally convecting lower layer. Concentrations of dissolved metals have been maintained well below permit limits by fertilization of the surface waters. The initial mine closure plan proposed removal of heavy metals by metal-sulfide precipitation via anaerobic sulfate-reducing bacteria, once anoxic conditions were established in the intermediate and lower layers. Anoxia has been achieved in the lower layer, but oxygen consumption rates have been less than initially predicted, and anoxia has yet to be achieved in the intermediate layer. If anoxia can be permanently established in the intermediate layer then biogeochemical removal rates may be high enough that fertilization may no longer be necessary. < copyright > 2006 ASCE.  
  Address Prof. G.A. Lawrence, Univ. of British Columbia, Vancouver, BC V6T 1Z4, Canada lawrence@civil.ubc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-9372 ISBN Medium  
  Area Expedition Conference  
  Notes Apr.; Treatment of acid rock drainage in a meromictic mine pit lake; 2873922; United-States 38; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17494 Serial 72  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: