|   | 
Details
   web
Records
Author (up) Bolzicco, J.; Carrera, J.; Ayora, C.
Title Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage Type Journal Article
Year 2004 Publication Revista Latino-Americana de Hidrogeologia Abbreviated Journal
Volume 4 Issue Pages 27-34
Keywords abandoned mines acid mine drainage Agrio River Andalusia Spain aquifers Aznalcollar Mine Cenozoic chemical composition chemical ratios copper ores dams disposal barriers drainage basins Europe geochemistry ground water Guadiamar River hydrochemistry Iberian Peninsula Iberian pyrite belt igneous rocks metal ores mineral composition mines mining Miocene Neogene permeability pH pollution reactive barriers remediation sedimentary rocks sediments Seville Spain Southern Europe Spain surface water tailings Tertiary volcanic rocks waste disposal water treatment zinc ores 22, Environmental geology
Abstract As a result of the collapse of a mine tailing dam in april 1998 about 40 km of the Agrio and Guadiamar valleys were covered with a layer of pyrite sludge. Although most of the sludge was removed, a small amount remains in the soil of the Agrio valley and the aquifer remains polluted with acid water (ph<4) and metals (10 mg/L Zn, 5 mg/L Cu and Al). A permeable reactive barrier was build across the aquifer to increase the alcalinity and retain the metals. The barrier is made up of three sections of 30 m longX1.4 m thickX5 m deep (average) containing different proportions of limestone gravel, organic compost and zero-valent iron. The residence time of the water in the barrier is about two days. Within the barrier, the pH values increase to near neutral mainly due to calcite dissolution. Metals co-precipitate as oxyhydroxides, and they are also adsorbed on the organic matter surface. Down-stream the barrier, the total pollution removal is around 60-90% for Zn and Cu, and from 50 to 90% for Al and acidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Eficiencia de la barrera permeable reactiva de Aznalcollar (Sevilla, Espana) como remedio de aguas acidas de mina. Reactive permeable disposal barrier at Aznalcollar Mine, Seville, Spain; as remediation for acid mine drainage; 2004-072864; References: 7; illus. incl. geol. sketch map Brazil (BRA); GeoRef; Spanish Approved no
Call Number CBU @ c.wolke @ 16471 Serial 443
Permanent link to this record
 

 
Author (up) Brown, A.
Title Geohydrology and adit plugging Type Book Chapter
Year 1995 Publication Special Publication – Colorado Geological Survey, Report: 38 Abbreviated Journal
Volume Issue Pages 87-98
Keywords acid mine drainage; Colorado; construction; discharge; geochemistry; ground water; hydrochemistry; hydrology; lithofacies; metals; methods; mines; monitoring; pH; pollutants; pollution; remediation; Rio Grande County Colorado; stream transport; Summitville Mine; tunnels; underground installations; United States; water table 22 Environmental geology; 21 Hydrogeology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Posey, H.H.; Pendleton, J.A.; Van Zyl, D.J.A.
Language Summary Language Original Title
Series Editor Series Title Proceedings; Summitville forum '95 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 188421651x Medium
Area Expedition Conference
Notes Geohydrology and adit plugging; GeoRef; English; 1995-052685; Summitville forum '95, Fort Collins, CO, United States, Jan. 17-20, 1995 References: 6; illus. incl. 3 tables, geol. sketch map Approved no
Call Number CBU @ c.wolke @ 6467 Serial 434
Permanent link to this record
 

 
Author (up) Demchak, J.; Morrow, T.; Skousen, J.; Donovan, J.J.; Rose, A.W.
Title Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites Type Journal Article
Year 2001 Publication Geochemistry – Exploration, Environment, Analysis Abbreviated Journal
Volume 1 Issue 1 Pages 71-80
Keywords acid mine drainage alkalinity anaerobic environment Appalachian Plateau Appalachians carbonate rocks Clearfield County Pennsylvania constructed wetlands Eh equilibrium Filson Wetlands ground water Howe Bridge Wetlands hydrology Jefferson County Pennsylvania limestone McKinley Wetlands Mill Creek watershed Moose Creek movement North America passive methods Pennsylvania pH pollution reclamation sedimentary rocks Sommerville Wetlands systems United States water treatment watersheds wetlands 22 Environmental geology 02B Hydrochemistry
Abstract Acid mine drainage (AMD) is a serious problem in many watersheds where coal is mined. Passive treatments, such as wetlands and anoxic limestone drains (ALDs), have been developed, but these technologies show varying treatment efficiencies. A new passive treatment technique is a vertical flow wetland or successive alkalinity producing system (SAPS). Four SAPS in Pennsylvania were studied to determine changes in water chemistry from inflow to outflow. The Howe Bridge SAPS removed about 130 mg l (super -1) (40%) of the inflow acidity concentration and about 100 mg l (super -1) (60%) iron (Fe). The Filson 1 SAPS removed 68 mg l (super -1) (26%) acidity, 20 mg l (super -1) (83%) Fe and 6 mg l (super -1) (35%) aluminium (Al). The Sommerville SAPS removed 112 mg l (super -1) (31%) acidity, exported Fe, and removed 13 mg l (super -1) (30%) Al. The McKinley SAPS removed 54 mg l (super -1) (91%) acidity and 5 mg l (super -1) (90%) Fe. Acid removal rates at our four sites were 17 (HB), 52 (Filson1), 18 (Sommerville) and 11 (McKinley) g of acid per m (super 2) of surface wetland area per day (g/m (super 2) d (super -1) ). Calcium (Ca) concentrations in the SAPS effluents were increased between 8 and 57 mg l (super -1) at these sites. Equilibrators, which were inserted into compost layers to evaluate redox conditions at our sites, showed that reducing conditions were generally found at 60 cm compost depths and oxidized conditions were found at 30 cm compost depths. Deeply oxidized zones substantiated observations that channel flow was occurring through some parts of the compost. The Howe Bridge site has not declined in treatment efficiency over a six year treatment life. The SAPS construction costs were equal to about seven years of NaOH chemical treatment costs and 30 years of lime treatment costs. So, if the SAPS treatment longevity is seven years or greater and comparable effluent water quality was achieved, the SAPS construction was cost effective compared to NaOH chemical treatment. Construction recommendations for SAPS include a minimum of 50 cm of compost thickness, periodic replacement or addition of fresh compost material, and increasing the number of drainage pipes underlying the limestone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites; 2002-008380; References: 15; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16518 Serial 58
Permanent link to this record
 

 
Author (up) Fischer, R.; Reissig, H.; Gockel, G.; Seidel, K.H.; Guderitz, T.
Title Direkte Neutralisation und Untergrundwasserbehandlung des Restwassers im Tagebaurestsee Heide VI. Direct neutralization and treatment of deep subsoil water of the residual water in the open-pit relic lake Heide VI Type Journal Article
Year 1998 Publication Braunkohle, Surface Mining Abbreviated Journal
Volume 50 Issue 3 Pages 273-278
Keywords chemical reactions; mathematical methods; methods; mine drainage; mining; pH; remediation; reservoirs; surface mining 22 Environmental geology; 02B Hydrochemistry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-2719 ISBN Medium
Area Expedition Conference
Notes Direkte Neutralisation und Untergrundwasserbehandlung des Restwassers im Tagebaurestsee Heide VI. Direct neutralization and treatment of deep subsoil water of the residual water in the open-pit relic lake Heide VI; 253811-4; illus. Federal Republic of Germany (DEU); GeoRef In Process; German Approved no
Call Number CBU @ c.wolke @ 6219 Serial 378
Permanent link to this record
 

 
Author (up) Guo, F.; Yu, H.
Title Hydrogeochemistry and treatment of acid mine drainage in southern China Type Book Chapter
Year 1993 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.10 Abbreviated Journal
Volume Issue Pages 277-283
Keywords acid mine drainage Asia bacteria chemical reactions China coal mines ecology Far East geochemistry hydrochemistry Jiangxi China lime mines oxidation pH pollution sulfides surface water trace elements water quality 22 Environmental geology 02B Hydrochemistry
Abstract Coal mines and various sulfide ore deposits are widely distributed in Southern China. Acid mine drainage associated with coal and metal sulfide deposits affects water quality in some mined areas of Southern China. Mining operations accelerate this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Some approaches to reduce the effects of acid mine drainage on water quality are adopted, and they can be divided into two aspects: (a) Man-made control technology based on long-term monitoring of acid mine drainage; and, (b) Neutralization of acidity through the addition of lime. It is important that metals in the waste water are removed in the process of neutralization. A new method for calculating neutralization dosage is applied. It is demonstrated that the calculated value is approximately equal to the actual required value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Zamora, B.A.; Connolly, R.E.
Language Summary Language Original Title
Series Editor Series Title The challenge of integrating diverse perspectives in reclamation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Hydrogeochemistry and treatment of acid mine drainage in southern China; GeoRef; English; 2002-028935; 10th annual national meeting of the American Society for Surface Mining and Reclamation, Spokane, WA, United States, May 16, 1993 References: 3; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 16744 Serial 366
Permanent link to this record