|   | 
Details
   web
Records
Author (up) Kuyucak, N.
Title Acid mine drainage; treatment options for mining effluents Type Journal Article
Year 2001 Publication Mining Environmental Management Abbreviated Journal
Volume 9 Issue 2 Pages 12-15
Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5723 Serial 324
Permanent link to this record
 

 
Author (up) Kuyucak, N.; St-Germain, P.
Title Possible options for in situ treatment of acid mine drainage seepages Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal
Volume Issue Pages 311-318
Keywords acid mine drainage; bacteria; base metals; biodegradation; bioremediation; carbonate rocks; experimental studies; in situ; limestone; metal ores; pollution; reduction; remediation; sedimentary rocks; seepage 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Possible options for in situ treatment of acid mine drainage seepages; GeoRef; English; 2007-045234; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 12; illus. incl. 4 tables Approved no
Call Number CBU @ c.wolke @ 6614 Serial 321
Permanent link to this record
 

 
Author (up) LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume 19 Issue 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record
 

 
Author (up) Matlock, M.M.; Howerton, B.S.; Atwood, D.A.
Title Chemical precipitation of heavy metals from acid mine drainage Type Journal Article
Year 2002 Publication Water Res Abbreviated Journal
Volume 36 Issue 19 Pages 4757-4764
Keywords mine water treatment BDET Acid mine drainage Water treatment Remediation Heavy metals Chemical precipitation Mercury Iron
Abstract The 1,3-benzenediamidoethanethiol dianion (BDET, known commercially as MetX) has been developed to selectively and irreversibly bind soft heavy metals from aqueous solution. In the present study BDET was found to remove >90% of several toxic or problematic metals from AMD samples taken from an abandoned mine in Pikeville, Kentucky. The concentrations of metals such as iron, may be reduced at pH 4.5 from 194 ppm to below 0.009 ppm. The formation of stoichiomietric BDET-metal precipitates in this process was confirmed using X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and infrared spectroscopy (IR).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Medium
Area Expedition Conference
Notes Nov.; Chemical precipitation of heavy metals from acid mine drainage; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/15005.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 15005 Serial 48
Permanent link to this record
 

 
Author (up) McLeod, K.W.; Ciravolo, T.G.
Title Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions Type Journal Article
Year 2003 Publication Environmental Toxicology and Chemistry Abbreviated Journal
Volume 22 Issue 12 Pages 2948-2951
Keywords Heavy metals ecological abstracts: pollution (73 7 3) seedling saturated medium biomass manganese sensitivity analysis bioaccumulation Nyssa aquatica Taxodium distichum
Abstract In anaerobic soils of wetlands, Mn is highly available to plants because of the decreasing redox potential and pH of flooded soil. When growing adjacent to each another in wetland forests, water tupelo (Nyssa aquatica L.) had 10 times greater leaf manganese concentration than bald cypress (Taxodium distichum [L.] Richard). This interspecific difference was examined over a range of manganese-enriched soil conditions in a greenhouse experiment. Water tupelo and bald cypress seedlings were grown in fertilized potting soil enriched with 0, 40, 80, 160, 240, 320, and 400 mg Mn/L of soil and kept at saturated to slightly flooded conditions. Leaf Mn concentration was greater in water tupelo than bald cypress for all but the highest Mn addition treatment. Growth of water tupelo seedlings was adversely affected in treatments greater than 160 mg Mn/L. Total biomass of water tupelo in the highest Mn treatment was less than 50% of the control. At low levels of added Mn, bald cypress was able to restrict uptake of Mn at the roots with resulting low leaf Mn concentrations. Once that root restriction was exceeded, Mn concentration in bald cypress leaves increased greatly with treatment; that is, the highest treatment was 40 times greater than control (4,603 vs 100 < mu >g/g, respectively), but biomass of bald cypress was unaffected by manganese additions. Bald cypress, a tree that does not naturally accumulate manganese, does so under manganese-enriched conditions and without biomass reduction in contrast to water tupelo, which is severely affected by higher soil Mn concentrations. Thus, bald cypress would be less affected by increased manganese availability in swamps receiving acidic inputs such as acid mine drainage, acid rain, or oxidization of pyritic soils.
Address K.W. McLeod, Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, United States mcleod@srel.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0730-7268 ISBN Medium
Area Expedition Conference
Notes Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions; 2574798; United-States 15; Geobase Approved no
Call Number CBU @ c.wolke @ 16010 Serial 302
Permanent link to this record