|   | 
Details
   web
Records
Author (down) Zinck, J.M.; Aube, B.C.
Title Optimization of lime treatment processes Type Journal Article
Year 2000 Publication CIM Bull. Abbreviated Journal
Volume 93 Issue 1043 Pages 98-105
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage buffering lime Canada
Abstract Lime neutralization technology is widely used in Canada for the treatment of acid mine drainage and other acidic effluents. In many locations, improvements to the lime neutralization process are necessary to achieve a maximum level of sludge densification and stability. Conventional lime neutralization technology effectively removes dissolved metals to below regulated limits. However, the metal hydroxide and gypsum sludge generated is voluminous and often contains less than 5% solids. Despite recent improvements in the lime neutralization technology, each year, more than 6 700 000 m3 of sludge are generated by treatment facilities operated by the Canadian mining industry. Because lime neutralization is still seen as the best available approach for some sites, sludge production and stability are expected to remain as issues in the near future. Several treatment parameters significantly impact operating costs, effluent quality, sludge production and the geochemical stability of the sludge. Studies conducted both at CANMET and NTC have shown that through minor modifications to the treatment process, plant operators can experience a reduction in operating costs, volume of sludge generated, metal release to the environment and liability. This paper discusses how modifications in plant operation and design can reduce treatment costs and liability associated with lime treatment.
Address J.M. Zinck, CANMET, Mining and Mineral Sciences Lab., Natural Resources Canada, Ottawa, Ont., Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0317-0926 ISBN Medium
Area Expedition Conference
Notes Optimization of lime treatment processes; 2291672; Canada 17; Geobase Approved no
Call Number CBU @ c.wolke @ 17537 Serial 183
Permanent link to this record
 

 
Author (down) Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
Year 2001 Publication J. Environ. Qual. Abbreviated Journal
Volume 30 Issue 5 Pages 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author (down) Wolkersdorfer, C.
Title Mine water tracer tests as a basis for remediation strategies Type Journal Article
Year 2005 Publication Chemie der Erde Abbreviated Journal
Volume 65 Issue Suppl. 1 Pages 65-74
Keywords Mine water treatment Stratification Convection First flush Tracer tests Microspheres Reactive transport Groundwater problems and environmental effects Pollution and waste management non radioactive acid mine drainage remediation
Abstract Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Therefore, the knowledge about the hydraulic behaviour of the mine water within the flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, but only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself. Applying the results of the test provides possibilities f or optimizing the outcome of the source-path-target methodology and therefore diminishes the costs of remediation strategies. Consequently, prior to planning of remediation strategies or numerical simulations, relatively cheap and reliable results for decision making can be obtained via a well conducted tracer test. < copyright > 2005 Elsevier GmbH. All rights reserved.
Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, 09596 Freiberg, Sachsen, Germany c.wolke@tu-freiberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2819 ISBN Medium
Area Expedition Conference
Notes Sep 19; Mine water tracer tests as a basis for remediation strategies; 2767887; Germany 34; Geobase Approved no
Call Number CBU @ c.wolke @ 17499 Serial 34
Permanent link to this record
 

 
Author (down) Wolkersdorfer, C.
Title Mine water tracing Type Journal Article
Year 2002 Publication Geological Society Special Publication Abbreviated Journal
Volume - Issue 198 Pages 47-60
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) flooding seepage abandoned mine tracer groundwater flow
Abstract This paper describes how tracer tests can be used in flooded underground mines to evaluate the hydrodynamic conditions or reliability of dams. Mine water tracer tests are conducted in order to evaluate the flow paths of seepage water, connections from the surface to the mine, and to support remediation plans for abandoned and flooded underground mines. There are only a few descriptions of successful tracer tests in the literature, and experience with mine water tracing is limited. Potential tracers are restricted due to the complicated chemical composition or low pH mine waters. A new injection and sampling method ('LydiA'-technique) overcomes some of the problems in mine water tracing. A successful tracer test from the Harz Mountains in Germany with Lycopodium clavatum, microspheres and sodium chloride is described, and the results of 29 mine water tracer tests indicate mean flow velocities of between 0.3 and 1.7 m min-1.
Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, Gustav-Zeuner-Strasse 12, Freiberg, Sachsen D-09599, Germany c.wolke@tu-freiberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-8719 ISBN Medium
Area Expedition Conference
Notes Mine water tracing; 2463597; United-Kingdom 71; Geobase Approved no
Call Number CBU @ c.wolke @ 17528 Serial 83
Permanent link to this record
 

 
Author (down) Wiseman, I.M.; Edwards, P.J.; Rutt, G.P.
Title Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 221-230
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects Wetlands and estuaries geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) geographical abstracts: physical geography hydrology (71 6 8) coal mine recovery aquatic ecosystem constructed wetland water treatment mine drainage abandoned mine
Abstract Seven kilometres of the River Pelenna in South Wales were impacted for approximately 30 years by discharges from abandoned coal mines. Elevated iron and low pH caused significant ochreous staining and had detrimental effects on the river ecology. The River Pelenna Mine water project constructed a series of passive wetland treatment systems to treat these discharges. Monitoring of the performance and environmental benefits of these has been undertaken as part of an Environment Agency R&D project. This project has assessed the changes in water quality as well as monitoring populations of invertebrates, fish and birds between 1993 and 2001. Performance data from the wetlands show that on average the three systems are removing between 82 and 95% of the iron loading from the mine waters. In the rivers downstream, the dissolved iron concentration has dropped to below the Environmental Quality Standard (EQS) of 1 mg/L for the majority of the time. Increases in pH downstream of the discharges have also been demonstrated. Trout (Salmo trutta) recovered quickly following mine water treatment, returning the next year to areas that previously had no fish. Intermittent problems with overflows from the treatment systems temporarily depleted the numbers, but the latest data indicate a thriving population. The overflow problems and also background episodes of acidity have affected the recovery of the riverine invertebrates. However, there have been gradual improvements in the catchment, and in the summer of 2001 most sites held faunas which approached those found in unpolluted controls. Recovery of the invertebrate fauna is reflected in marked increases in the breeding success of riverine birds between 1996 and 2001. This study has shown that constructed wetlands can be an effective, low cost and sustainable solution to ecological damage caused by abandoned mine drainage.
Address I.M. Wiseman, Environment Agency Wales, 19 Penyfai Lane, Furnace, Llanelli SA15 4EL, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes Recovery of an aquatic ecosystem following treatment of abandoned mine drainage with constructed wetlands; 2530429; United-Kingdom 25; Geobase Approved no
Call Number CBU @ c.wolke @ 17516 Serial 206
Permanent link to this record