|   | 
Details
   web
Records
Author (up) Ford, C.T.; Bayer, J.F.
Title Type Book Whole
Year 1973 Publication Abbreviated Journal
Volume Issue Pages 123 pp
Keywords acid mine drainage
Abstract Epa R2 73 150
Address
Corporate Author Thesis
Publisher U.S. Government Print. Offfice Place of Publication Washington Editor
Language Summary Language Original Title
Series Editor Series Title Treatment of ferrous acid mine drainage with activated carbon Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Treatment of ferrous acid mine drainage with activated carbon; 99; AMD ISI | Wolkersdorfer; TUB München Approved no
Call Number CBU @ c.wolke @ 9626 Serial 377
Permanent link to this record
 

 
Author (up) Foucher, S.; Battaglia-Brunet, F.; Ignatiadis, I.; Morin, D.
Title Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery Type Journal Article
Year 2001 Publication Chemical Engineering Science Abbreviated Journal
Volume 56 Issue 4 Pages 1639-1645
Keywords Acid mine drainage Sulfate-reducing bacteria Sulfide precipitation Hydrogen transfer Fixed bed column reactor
Abstract Acid-mine drainage can contain high concentrations of heavy metals and release of these contaminants into the environment is generally avoided by lime neutralization. However, this classical treatment is expensive and generates large amounts of residual sludge. The selective precipitation of metals using H2S produced biologically by sulfate-reducing bacteria has been proposed as an alternative process. Here, we report on experiments using real effluent from the disused Chessy-les-Mines mine-site at the laboratory pilot scale. A fixed-bed bioreactor, fed with an H2/CO2 mixture, was used in conjunction with a gas stripping column. The maximum rate of hydrogen transfer in the bioreactor was determined before inoculation. kLa was deduced from measurements of O2 using Higbie and Danckwert's models which predict a dependence on diffusivity. The dynamic method of physical absorption and desorption was used. The maximum rate of H2 transfer suggests that this step should not be a limiting factor. However, an increase in H2 flow rate was observed to induce an increase in sulfate reduction rate. For the precipitation step, the gas mixture from the bioreactor was bubbled into a stirred reactor fed with the real effluent. Cu and Zn could be selectively recovered at pH=2.8 and pH=3.5, respectively. Other impurities such as Ni and Fe could also be removed at pH=6 by sulfide precipitation. Part of the outlet stream from the bioreactor was used to regulate and maintain the pH during sulfide precipitation by feeding the outlet stream back into the bioreactor. The replacement of synthetic medium with real effluent had a positive effect on sulfate reduction rate which increased by 30-40%. This improvement in bacterial efficiency may be related to the large range of oligo-elements provided by the mine-water. The maximum sulfate reduction rate observed with the real effluent was 200 mgl-1 h-1, corresponding to a residence time of 0.9 day. A preliminary cost estimation based on a treatment rate of 5 m3 h-1 of a mine effluent containing 5 gl-1 SO42- is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2509 ISBN Medium
Area Expedition Conference
Notes Feb.; Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10064.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 10064 Serial 54
Permanent link to this record
 

 
Author (up) Fraser, W.W.; Robertson, J.D.
Title Subaqueous disposal of reactive mine waste; an overview and update of case studies; MEND, Canada Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06A-94 Abbreviated Journal
Volume Issue Pages 250-259
Keywords acid mine drainage; British Columbia; Canada; chemical reactions; experimental studies; ground water; lakes; Manitoba; Mine Environment Neutral Drainage Program; pollution; pore water; remediation; surface water; tailings; waste disposal; water quality; Western Canada 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 1 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Subaqueous disposal of reactive mine waste; an overview and update of case studies; MEND, Canada; GeoRef; English; 2007-045178; International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 18; illus. incl. 2 tables, sketch map Approved no
Call Number CBU @ c.wolke @ 6585 Serial 376
Permanent link to this record
 

 
Author (up) Fricke, J.; Blickwedel, R.; Hagerty, P.
Title Biotreatment of metal mine waste waters; case histories Type Journal Article
Year 1997 Publication Open-File Report – US Geological Survey Abbreviated Journal
Volume Of 97-0496 Issue Pages 25
Keywords abandoned mines acid mine drainage bacteria bioremediation chemical composition concentration efficiency geochemistry metals mines pollution remediation USGS waste water water quality water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-1497 ISBN Medium
Area Expedition Conference
Notes Biotreatment of metal mine waste waters; case histories; 1; GeoRef: 98-68755 160101 / € 0; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9627 Serial 375
Permanent link to this record
 

 
Author (up) Fyson, A.; Nixdorf, B.; Steinberg, C.E.W.
Title Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes Type Book Chapter
Year 1998 Publication Water, Air and Soil Pollution Abbreviated Journal
Volume Issue Pages 353-363
Keywords acid mine drainage; acidification; ammonium ion; Brandenburg Germany; Central Europe; concentration; dissolved materials; ecology; Europe; eutrophication; ferric iron; Germany; iron; lacustrine environment; Lusatia; mass balance; metals; nitrate ion; pollutants; pollution; pore water; remediation; sediment-water interface; sediments; surface water; titration; transport 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication 108 Editor Peiffer, S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Manipulation of the sediment-water interface of extremely acidic mining lakes with potatoes; laboratory studies with intact sediment cores Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes; GeoRef; English; 1999-021233; Conference on Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes, Bayreuth, Federal Republic of Germany, Feb. 1997 References: 17; illus. Approved no
Call Number CBU @ c.wolke @ 6102 Serial 21
Permanent link to this record