|   | 
Details
   web
Records
Author Cram, J.C.
Title Diversion well treatment of acid water, Lick Creek, Tioga County, PA Type Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acid rain atmospheric precipitation carbonate rocks diversion wells Lick Creek limestone Pennsylvania pH pollution rain sedimentary rocks surface water Tioga County Pennsylvania United States water quality water treatment wells 22, Environmental geology
Abstract Diversion wells implement a fluidized bed of limestone for the treatment of acid water resulting from acid mine drainage or acid precipitation. This study was undertaken to better understand the operation of diversion wells and to define the physical and chemical factors having the greatest impact on the neutralization performance of the system. The study site was located near Lick Creek, a tributary stream of Babb Creek, near the Village of Arnot in Tioga County, Pennsylvania. Investigative methods included collection and analysis of site water quality and limestone data and field study of this as well as other diversion well sites. Analysis of data led to these general conclusions: The site received surface water influenced by three primary sources 1) precipitation, 2) mine drainage baseflow, and 3) melted snow. Water mostly influenced by precipitation events and mine drainage baseflow was more acidic than water influenced by melting snow conditions. The diversion wells were generally able to treat only half or less of the total stream flow of Lick Creek and under extremely high flow conditions the treatment provided was minimal. A range of flow conditions were identified which produced the best performance for the two diversion wells. Treatment produced by the system decreased through the loading cycle and increases to a maximum value after each weekly refilling of limestone. Fine grained sediment in the stream was found to be limestone of the same general composition as the material placed within the wells. Neutralization of acid water was largely due to microscopic particles rather than the limestone sediment discharged to the stream. Additional downstream buffering due to the limestone sediment physically discharged from the vessels was not apparent. Diversion well systems are inexpensive and simple to construct. In addition, the systems were found to be highly reliable and able to effectively treat acid water resulting from mine drainage and acid precipitation. Diversion wells provide better treatment when the treatment site is located at the source of the acidity (such as a mine discharge), rather than at the receiving stream. Systems should be designed with 15 to 20 feet of hydraulic head and the site must have year-round access. Diversion well systems require weekly addition of limestone gravel to the vessels to facilitate continual treatment. A great deal of commitment is necessary to maintain a diversion well system for long periods of time. These systems are more economical and require less attention that conventional chemical treatment of acid water. However, these systems require more attention that traditional passive treatment methods for treatment of acid, including mine drainage.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Pennsylvania State University at University Park, Place of Publication University Park Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Diversion well treatment of acid water, Lick Creek, Tioga County, PA; GeoRef; English; References: 49; illus. Approved no
Call Number CBU @ c.wolke @ 16652 Serial 411
Permanent link to this record
 

 
Author Curi, A.C.; Granda, W.J.V.; Lima, H.M.; Sousa, W.T.
Title Zeolites and their application in the decontamination of mine waste water Type Journal Article
Year 2006 Publication Informacion Tecnologica Abbreviated Journal
Volume 17 Issue 6 Pages 111-118
Keywords adsorption decontamination effluents industrial waste ion exchange metallurgical industries metallurgy mining mining industry porosity wastewater treatment zeolites zeolites decontamination mine waste water genesis porosity adsorption ionic exchange mineral metallurgical effluents mercury pollution artisan mining activities heavy metals removal metal mining effluents mercury vapors ovens fire amalgams Manufacturing and Production
Abstract This paper describes the genesis, structure and classification of natural zeolites, including their most relevant properties such as porosity, adsorption and ionic exchange. The use of natural zeolites in the treatment of effluents containing heavy metals is reviewed based on current literature. These uses are focused on mineral-metallurgical effluents and mercury pollution related to artisan mining activities. The study shows that natural zeolites are efficient in removal of heavy metals in metal mining effluents, can be produced and improved at a low cost, and can also be used to adsorb mercury vapors from ovens used to fire amalgams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0716-8756 ISBN Medium
Area Expedition Conference
Notes Zeolites and their application in the decontamination of mine waste water; 9532002; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16784 Serial 409
Permanent link to this record
 

 
Author Davies, G.J.; Holmes, M.; Wireman, M.; King, K.; Gertson, J.N.; Stefanic, J.M.
Title Water tracing at scales of hours to decades as an aid to estimating hydraulic characteristics of the Leadville Mine drainage tunnel Type Journal Article
Year 2001 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Arkansas River Colorado drainage dye tracers field studies fluorescence ground water Lake County Colorado Leadville Mine Leadville mining district pH quantitative analysis recharge surveys tunnels United States water treatment 30 Engineering geology 21 Hydrogeology
Abstract The Leadville Mine Drainage Tunnel (LMDT) is a 3.3 kilometer structure that was constructed in the complicated geology of the Leadville mine district in the 1940's. Discharge from the LMDT is impacted by heavy metals and is treated at a plant built in 1992 operated by the United States Bureau of Reclamation. On the surface waste rock and other remnants of the mining operations litter the landscape and this material is exposed to precipitation. As a result of contact with this material, surface water often has pH of less than 3 and its containment and disposal is necessary before it impacts surface drainage and the nearby Arkansas River. Using a borehole drilled into the mine workings the U.S. EPA has devised a plan in which the impacted water is contained on the surface which then can be discharged into the mine workings to discharge from the LMDT and be treated. The percentage of water discharging from the mining district along the drainage tunnel is unknown, and since there is no access, information about the condition of the tunnel with regards to blockages is also relatively obscure. Application of quantitative water tracing using fluorescent dyes was used to model the flow parameters at the scale of hours in the tunnel and evaluate the likelihood of blockages. Because the tunnel has intersected several lithologies and faults, other locations such as discharging shafts, adits and surface streams that could be hydraulically connected to the LMDT were also monitored. An initial tracer experiment was done using an instantaneous injection, which was followed by additional injections of water. Another tracer injection was done when there was a continuous flow of impacted water into the workings. Analysis of the tracer concentration responses at water-filled shafts and at the portal were used to model the flow along the tunnel and estimate several hydraulic parameters. Waters in these settings are mixtures of components with different residence times, so, qualitative tritium data were used to evaluate residence times of decades. The combined injected tracer and tritium data as well as other geochemical data were used to infer the nature of flow and recharge into the tunnel.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, 2001 annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2004-013418; Geological Society of America, 2001 annual meeting, Boston, MA, United States, Nov. 1-10, 2001; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16511 Serial 408
Permanent link to this record
 

 
Author Davison, W.
Title Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities Type Journal Article
Year 1988 Publication Water Res Abbreviated Journal
Volume 22 Issue 5 Pages 577-583
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Neutralizing Strategies For Acid Waters – Sodium And Calcium Products Generate Different Acid Neutralizing Capacities; Wos:A1988p420900008; Times Cited: 8; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 9085 Serial 90
Permanent link to this record
 

 
Author Demchak, J.; Morrow, T.; Skousen, J.; Donovan, J.J.; Rose, A.W.
Title Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites Type Journal Article
Year 2001 Publication Geochemistry – Exploration, Environment, Analysis Abbreviated Journal
Volume 1 Issue 1 Pages 71-80
Keywords acid mine drainage alkalinity anaerobic environment Appalachian Plateau Appalachians carbonate rocks Clearfield County Pennsylvania constructed wetlands Eh equilibrium Filson Wetlands ground water Howe Bridge Wetlands hydrology Jefferson County Pennsylvania limestone McKinley Wetlands Mill Creek watershed Moose Creek movement North America passive methods Pennsylvania pH pollution reclamation sedimentary rocks Sommerville Wetlands systems United States water treatment watersheds wetlands 22 Environmental geology 02B Hydrochemistry
Abstract Acid mine drainage (AMD) is a serious problem in many watersheds where coal is mined. Passive treatments, such as wetlands and anoxic limestone drains (ALDs), have been developed, but these technologies show varying treatment efficiencies. A new passive treatment technique is a vertical flow wetland or successive alkalinity producing system (SAPS). Four SAPS in Pennsylvania were studied to determine changes in water chemistry from inflow to outflow. The Howe Bridge SAPS removed about 130 mg l (super -1) (40%) of the inflow acidity concentration and about 100 mg l (super -1) (60%) iron (Fe). The Filson 1 SAPS removed 68 mg l (super -1) (26%) acidity, 20 mg l (super -1) (83%) Fe and 6 mg l (super -1) (35%) aluminium (Al). The Sommerville SAPS removed 112 mg l (super -1) (31%) acidity, exported Fe, and removed 13 mg l (super -1) (30%) Al. The McKinley SAPS removed 54 mg l (super -1) (91%) acidity and 5 mg l (super -1) (90%) Fe. Acid removal rates at our four sites were 17 (HB), 52 (Filson1), 18 (Sommerville) and 11 (McKinley) g of acid per m (super 2) of surface wetland area per day (g/m (super 2) d (super -1) ). Calcium (Ca) concentrations in the SAPS effluents were increased between 8 and 57 mg l (super -1) at these sites. Equilibrators, which were inserted into compost layers to evaluate redox conditions at our sites, showed that reducing conditions were generally found at 60 cm compost depths and oxidized conditions were found at 30 cm compost depths. Deeply oxidized zones substantiated observations that channel flow was occurring through some parts of the compost. The Howe Bridge site has not declined in treatment efficiency over a six year treatment life. The SAPS construction costs were equal to about seven years of NaOH chemical treatment costs and 30 years of lime treatment costs. So, if the SAPS treatment longevity is seven years or greater and comparable effluent water quality was achieved, the SAPS construction was cost effective compared to NaOH chemical treatment. Construction recommendations for SAPS include a minimum of 50 cm of compost thickness, periodic replacement or addition of fresh compost material, and increasing the number of drainage pipes underlying the limestone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania Evolution and remediation of acid-sulfate groundwater systems at reclaimed mine-sites; 2002-008380; References: 15; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16518 Serial 58
Permanent link to this record