|   | 
Details
   web
Records
Author (up) Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Puls, R.W.
Title Treatment of dissolved metals using permeable reactive barriers Type Journal Article
Year 1998 Publication Groundwater Quality: Remediation and Protection Abbreviated Journal
Volume Issue 250 Pages 483-490
Keywords adsorption; aquifers; attenuation; dissolved materials; metals; nutrients; oxidation; pollutants; pollution; precipitation; reduction; water treatment Groundwater quality Pollution and waste management non radioactive Groundwater acid mine drainage aquifer pollution conference proceedings containment barrier metal tailings Canada Ontario Nickel Rim Mine United States North Carolina Elizabeth City mine water treatment
Abstract Permeable reactive barriers are a promising new approach to the treatment of dissolved contaminants in aquifers. This technology has progressed rapidly from laboratory studies to full-scale implementation over the past decade. Laboratory treatability studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4, and SO4. Small scale field studies have indicated the potential for treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4, and SO4. Permeable reactive barriers have been used in full-scale installations for the treatment of hexavalent chromium, dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn, and dissolved nutrients, including nitrate and phosphate. A full-scale barrier designed to prevent the release of contaminants associated with inactive mine tailings impoundment was installed at the Nickel Rim mine site in Canada in August 1995. This reactive barrier removes Fe, SO,, Ni and other metals. The effluent from the barrier is neutral in pH and contains no acid-generating potential, and dissolved metal concentrations are below regulatory guidelines. A full-scale reactive barrier was installed to treat Cr(VI) and halogenated hydrocarbons at the US Coast Guard site in Elizabeth City, North Carolina, USA in June 1996. This barrier removes Cr(VI) from >8 mg l(-1) to <0.01 mg l(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0144-7815 ISBN Medium
Area Expedition Conference
Notes Treatment of dissolved metals using permeable reactive barriers; Isip:000079718200072; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 8601 Serial 178
Permanent link to this record
 

 
Author (up) Bowell, R.J.
Title Type Book Whole
Year 2004 Publication Abbreviated Journal
Volume Issue Pages 75-91
Keywords mine water sulphate removal passive treatment acid mine drainage bacteria bioremediation decontamination effluents ground water legislation osmosis oxidation pollutants pollution remediation reverse osmosis selenites sulfate ion toxic materials USGS water treatment
Abstract
Address
Corporate Author Thesis
Publisher University of Newcastle Place of Publication 2 Editor Jarvis Adam, P.; Dudgeon Bruce, A.; Younger Paul, L.
Language Summary Language Original Title
Series Editor Series Title mine water 2004 – Proceedings International Mine Water Association Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-9543827-4-9 Medium
Area Expedition Conference
Notes A review of sulphate removal options for mine waters; 1; AMD ISI | Wolkersdorfer; FG 6 Abb., 7 Tab. Approved no
Call Number CBU @ c.wolke @ 9546 Serial 439
Permanent link to this record
 

 
Author (up) Bowell, R.J.; Connelly, R.J.; Ellis, J.; Cowan, J.; Wood, A.; Barta, J.; Edwards, P.
Title A review of sulfate removal options from mine waters Type Journal Article
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; bacteria; bioremediation; decontamination; effluents; ground water; legislation; osmosis; oxidation; pollutants; pollution; remediation; reverse osmosis; selenites; sulfate ion; toxic materials; USGS; water treatment 22 Environmental geology; 02A General geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Open-File Report - U. S. Geological Survey, Report: OF 97-0496 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title 4th International symposium on Environmental geochemistry; proceedings Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1998-068727; 4th International symposium on Environmental geochemistry, Vail, CO, United States, Oct. 5-10, 1997 U. S. Geol. Surv., Denver, CO, United States; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6287 Serial 438
Permanent link to this record
 

 
Author (up) Burgess, J.E.; Stuetz, R.M.
Title Activated Sludge for the Treatment of Sulphur-rich Wastewaters Type Journal Article
Year 2002 Publication Miner. Eng. Abbreviated Journal
Volume 15 Issue 11 Pages 839-846
Keywords acid rock drainage biooxidation biotechnology environmental waste processing acid-mine drainage sulfate-reducing bacteria biological treatment waste-water metals acclimation remediation oxidation reduction removal
Abstract The aim of this investigation was to assess the potential of activated sludge for the remediation of sulphur-rich wastewaters. A pilot-scale activated sludge plant was acclimatised to a low load of sulphide and operated as a flow-through unit. Additional sludge samples from different full-scale plants were compared with the acclimatised and unacclimatised sludges using batch absorption tests. The effects of sludge source and acclimatisation on the ability of the sludge to biodegrade high loads of sulphide were evaluated. Acclimatisation to low-sulphide concentrations enabled the sludge to degrade subsequent high loads which were toxic to unacclimatised sludge. Acclimatisation was seen to be an effect of selection pressure on the biomass, suggesting that the treatment capability of activated sludge will develop after acclimation, indicating potential for treatment of acid mine drainage (AMD) by a standard wastewater treatment process. Existing options for biological treatment of AMD are described and the potential of activated sludge treatment for AMD discussed in comparison with existing technologies. (C) 2002 Elsevier Science Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-6875 ISBN Medium
Area Expedition Conference
Notes Nov.; Activated Sludge for the Treatment of Sulphur-rich Wastewaters; Isi:000179970500009; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10093.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 10093 Serial 40
Permanent link to this record
 

 
Author (up) Ciftci, H.; Akcil, A.
Title Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD) Type Journal Article
Year 2006 Publication Madencilik = The = Journal of the Chamber of Mining Engineers of Turkey Abbreviated Journal
Volume 45 Issue 1 Pages 35-45
Keywords acid mine drainage biodegradation methods microorganisms oxidation pollutants pollution remediation sulfides 22, Environmental geology
Abstract Acidic mine drainage (AMD) is a serious environmental problem in mining areas throughout the world. AMD occurs as a result of the natural oxidation of sulfide minerals when they are exposed to oxygen and water during their disposal and storage at the mining areas. Because it includes low pH and high concentrations of dissolved metals and sulphates, AMD can potentially damage to the environment. If the formation of AMD can't be prevented and controlled, it must be collected and treated to remove acidity and reduce the concentration of heavy metals and suspended solids before its release to the environment. Different types of microorganisms in the treatment of AMD can play a very important role in the development and the application of microbiological prevention, control and treatment technologies. The purpose of this article is to give information about the passive biological methods used in the treatment and the control of AMD and the role of microorganisms in these methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-9416 ISBN Medium
Area Expedition Conference
Notes Asidik maden drenajinin (AMD) giderilmesinde uygulanan biyolojik yontemler. Biological methods applied in the treatment of acid mine drainage (AMD); 2006-075215; References: 58 Turkey (TUR); GeoRef; Turkish Approved no
Call Number CBU @ c.wolke @ 16444 Serial 416
Permanent link to this record