|   | 
Details
   web
Records
Author Smith, I.J.H.
Title AMD treatment, it works but are we using the right equipment? Type Journal Article
Year 2000 Publication Tailings and mine waste ' Abbreviated Journal
Volume Issue Pages 419-427
Keywords Groundwater problems and environmental effects geomechanics abstracts: excavations (77 10 10) acid mine drainage conference proceedings methodology mine drainage remediation waste management
Abstract For the past 40 years various approaches have been developed to treat acid waters coming from abandoned as well as operating mining operations. System designs have evolved to meet increasingly stringent discharge permit limits for treated water, as well as to provide solid disposal within economic constraints. A treatment system for remediation of acid mine drainage (AMD) or acid groundwater (AG) requires two main steps: 1. The addition of chemicals to precipitate dissolved metals contained in the waters, and if necessary, to coagulate the precipitated solids ahead of physical separation. 2. Physical separation of the precipitated solids from the water so the water can be lawfully discharged from the site. Choosing the appropriate technology and equipment results in the most efficient plant design, the lowest capital outlay, and minimum operating cost. The goal of these plants is to discharge liquids and solids able to meet standards. The separation of solids from liquids can be achieved through various means, including gravity settling, flotation, mechanical dewatering, filtration and evaporation. As important as the liquid solids separation unit operations are, they are driven by the chemistry of the water to be treated. The content of the dissolved solids will influence the quality and quantity of the solids produced during precipitation. Thus the two aspects must be integrated, with chemistry first, then mechanical engineering. This presentation will provide an overview of a number of liquid solids separation tools currently being used to treat AMD-AG at several sites in the USA. It will also discuss how their operations are impacted by the chemistry of their particular acid water feeds. The tools used include clarifier-thickeners, solids contact clarifiers, dissolved air flotation, polishing filters, membrane filters, and mechanical dewatering devices (belt and filter presses, vacuum filters, and driers).
Address J.H. Smith III, SEPCO Incorporated, Fort Collins, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Book; Conference-Paper; AMD treatment, it works but are we using the right equipment?; 2263351; Using Smart Source Parsing 00-Proceedings-of-the-7th-international-conference-Fort-Collins-January- 2000 Netherlands; Geobase Approved no
Call Number CBU @ c.wolke @ 17541 Serial 237
Permanent link to this record
 

 
Author Srivastave, A.; Chhonkar, P.K.
Title Amelioration of coal mine spoils through fly ash application as liming material Type Journal Article
Year 2000 Publication J. Ind. Res. Abbreviated Journal
Volume 59 Issue 4 Pages 309-313
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) mitigation fly ash feasibility study acid mine drainage lime
Abstract The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
Address P.K. Chhonkar, Div. of Soil Sci. and Agr. Chem., Indian Agricultural Research Inst., New Delhi 110 012, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4456 ISBN Medium
Area Expedition Conference
Notes Amelioration of coal mine spoils through fly ash application as liming material; 2364216; India 18; Geobase Approved no
Call Number CBU @ c.wolke @ 17535 Serial 234
Permanent link to this record
 

 
Author Taylor, J.; Waters, J.
Title Treating ARD; how, when, where and why Type Journal Article
Year 2003 Publication Mining Environmental Management Abbreviated Journal
Volume 11 Issue 3 Pages 6-9
Keywords acid mine drainage; acid rock drainage; acidification; alkalinity; carbonate rocks; chemical properties; chemical reactions; coal; disposal barriers; economics; flocculation; ground water; heavy metals; human activity; ion exchange; limestone; mines; oxidation; oxides; permeability; pollution; porosity; pyrolusite; remediation; sedimentary rocks; surface water; waste disposal; waste management; water pollution; water treatment; wetlands 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area Expedition Conference
Notes Treating ARD; how, when, where and why; 2004-045038; References: 8; illus. incl. 2 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5528 Serial 225
Permanent link to this record
 

 
Author Totsche, O.; Fyson, A.; Kalin, M.; Steinberg Christian, E.W.
Title Titration curves: A useful instrument for assessing the buffer systems of acidic mining waters Type Journal Article
Year 2006 Publication ESPR Environmental Science and Pollution Research Abbreviated Journal
Volume 13 Issue 4 Pages 215-224
Keywords Abwasseraufbereitung Bergbau Titration Säuregehalt Grundwasser Pufferlösung Neutralisation Titrationskurve Bergbauabwasser
Abstract The acidification of mine waters is generally caused by metal sulfide oxidation, related to mining activities. These waters are characterized by low pH and high acidity due to strong buffering systems. The standard acidity parameter, the BNC (Base Neutralization Capacity), is determined by endpoint titration, and reflects a cumulative parameter of both hydrogen ions and all buffering systems, but does not give information on the individual buffer systems. It is demonstrated that a detailed interpretation of titration curves can provide information about the strength of the buffering systems. The buffering systems are of importance for environmental studies and treatment of acidic mining waters. Titrations were carried out by means of an automatic titrator using acidic mining waters from Germany and Canada. The curves were interpreted, compared with each other, to endpoint titration results and to elemental concentrations contained therein. The titration curves were highly reproducible, and contained information about the strength of the buffer systems present. Interpretations are given, and the classification and comparison of acidic mining waters, by the nature and strength of their buffering systems derived from titration curves are discussed. The BNC-values calculated from the curves were more precise than the ones determined by the standard endpoint titration method. Due to the complex buffer mechanisms in acidic mining waters, the calculation of major metal concentrations from the shape of the titration curve resulted in estimates, which should not be confused with precise elemental analysis results. Conclusion. Titration curves provide an inexpensive, valuable and versatile tool, by which to obtain sophisticated information of the acidity in acidic water. The information about the strength of the present buffer systems can help to understand and document the complex nature of acidic mining water buffer systems. Finally, the interpretation of titration curves could help to improve treatment measurements and the ecological understanding of these acidic waters.
Address Leibniz-Institut für Gewässerökologie und Binnenfischerei, Berlin, DE; Boojum Research, Toronto, CA; Humboldt-Universität Berlin, DE
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344 ISBN Medium
Area Expedition Conference
Notes Titration curves: A useful instrument for assessing the buffer systems of acidic mining waters; 39481, BERG , 13.11.06; Words: 519; 200610 05282; 10 Seiten, 15 Bilder, 2 Tabellen, 39 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3BX *chemische Grundlagen* 3IFC *Messung und Prüfung chemischer Größen, chemische Analytik* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17580 Serial 224
Permanent link to this record
 

 
Author Walitt, A.; Jasinski, R.; Keilin, B.
Title Silicate treatment of coal mine refuse piles Type Journal Article
Year 1970 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; coal; economics; environmental geology; methods; mining; organic residues; pollution; prevention; sedimentary rocks; sodium silicate; solutions; treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0085-7068 ISBN Medium
Area Expedition Conference
Notes Silicate treatment of coal mine refuse piles; 1976-011512; United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6853 Serial 221
Permanent link to this record