toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ketellapper, V.L.; Williams, L.O.; Bell, R.S.; Cramer, M.H. openurl 
  Title The control of acid mine drainage at the Summitville Mine Superfund Site Type Book Chapter
  Year 1996 Publication Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), vol.1996 Abbreviated Journal  
  Volume Issue Pages 303-311  
  Keywords acid mine drainage Colorado Del Norte Colorado gold ores metal ores mines mining mining geology open-pit mining pollutants pollution remediation Rio Grande County Colorado Summitville Mine Superfund sites surface mining United States water quality 22, Environmental geology  
  Abstract The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The discharges from the adits was accomplished by plugging the Reynolds and Chandler adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative. Beginning in 1993, mining wastes which were the most significant sources of AMD were being excavated and placed in the Mine Pits. In November 1995, all of the waste from these sources had been excavated and placed in the the Mine Pits. This paper discusses EPA's overall approach to stabilize on-site sources sufficiently such that aquatic, agricultural, and drinking water uses in the Alamosa watershed are restored and/or maintained with minimal water treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The control of acid mine drainage at the Summitville Mine Superfund Site; GeoRef; English; 2002-027195; Symposium on the Application of geophysics to engineering and environmental problems, Keystone, CO, United States, April 28-May 2, 1996 References: 11; illus. incl. geol. sketch map Approved no  
  Call Number CBU @ c.wolke @ 16654 Serial 334  
Permanent link to this record
 

 
Author Kleinmann, R.; Majumdar, S.K.; Miller, E.W.; Brenner, F.J. openurl 
  Title Type Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages 497-509  
  Keywords abandoned mines; acid mine drainage; coal mines; constructed wetlands; drainage; environmental effects; mines; mitigation; pollutants; pollution; remediation; surface water; toxic materials; water quality; water treatment; wetlands 22, Environmental geology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher The Pennsylvania Academy of Science Book Publications Place of Publication 25 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Ecology of wetlands and associated systems Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Constructing wetlands for passive treatment of coal mine drainage; 2002-024212; GeoRef; English; References: 27; illus. incl. 2 tables United States (USA) Approved no  
  Call Number CBU @ c.wolke @ 6210 Serial 330  
Permanent link to this record
 

 
Author Kuyucak, N. openurl 
  Title Acid mine drainage; treatment options for mining effluents Type Journal Article
  Year 2001 Publication Mining Environmental Management Abbreviated Journal  
  Volume 9 Issue 2 Pages 12-15  
  Keywords acid mine drainage; alkalinity; cadmium; chemical reactions; copper; cyanides; decontamination; degradation; effluents; flotation; heavy metals; lead; lime; metals; mines; nickel; oxidation; pH; physicochemical properties; pollution; reagents; reduction; remediation; seepage; sludge; solid waste; solvents; stability; tailings; toxic materials; toxicity; waste disposal; water quality; zinc  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-4218 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage; treatment options for mining effluents; 2001-050827; References: 23; illus. United Kingdom (GBR); GeoRef; English Approved no  
  Call Number CBU @ c.wolke @ 5723 Serial 324  
Permanent link to this record
 

 
Author Kuyucak, N. url  openurl
  Title Acid mine drainage prevention and control options Type Journal Article
  Year 2002 Publication CIM Bull. Abbreviated Journal  
  Volume 95 Issue 1060 Pages 96-102  
  Keywords acid mine drainage prevention tailings environment waste sulphides Groundwater problems and environmental effects Pollution and waste management non radioactive Surface water quality Waste Management and Pollution Policy tailings sulfide mining industry waste management  
  Abstract Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. It occurs as a result of natural oxidation of sulphide minerals contained in mining wastes at operating and closed/decommissioned mine sites. AMD may adversely impact the surface water and groundwater quality and land use due to its typical low pH, high acidity and elevated concentrations of metals and sulphate content. Once it develops at a mine, its control can be difficult and expensive. If generation of AMD cannot be prevented, it must be collected and treated. Treatment of AMD usually costs more than control of AMD and may be required for many years after mining activities have ceased. Therefore, application of appropriate control methods to the site at the early stage of the mining would be beneficial. Although prevention of AMD is the most desirable option, a cost-effective prevention method is not yet available. The most effective method of control is to minimize penetration of air and water through the waste pile using a cover, either wet (water) or dry (soil), which is placed over the waste pile. Despite their high cost, these covers cannot always completely stop the oxidation process and generation of AMD. Application of more than one option might be required. Early diagnosis of the problem, identification of appropriate prevention/control measures and implementation of these methods to the site would reduce the potential risk of AMD generation. AMD prevention/control measures broadly include use of covers, control of the source, migration of AMD, and treatment. This paper provides an overview of AMD prevention and control options applicable for developing, operating and decommissioned mines.  
  Address Dr. N. Kuyucak, Golder Associates Ltd., Ottawa, Ont., Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0317-0926 ISBN Medium  
  Area Expedition Conference  
  Notes Acid mine drainage prevention and control options; 2419232; Canada 38; Geobase Approved no  
  Call Number CBU @ c.wolke @ 17532 Serial 64  
Permanent link to this record
 

 
Author Laine, D.M. openurl 
  Title Type Book Whole
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 581-584  
  Keywords hydrogeology mining water treatment quality hydroxide flow pumping hydrochemistry sedimentation wetland  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine, Water & Environment Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Remediation of the Old Meadows Gravity Minewater Discharge; 1; AMD ISI | Wolkersdorfer; FG 'de' 5 Abb., 1 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9757 Serial 320  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: