|   | 
Details
   web
Records
Author (up) McConchie, D.M.; Clark, M.; Hanahan, C.; Baun, R.
Title New treatments for the old problems of acid mine drainage and sulphidic mine tailings storage Type Journal Article
Year 2000 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; ash; carbonate rocks; clastic sediments; construction materials; crushed stone; hydroxides; iron hydroxides; iron oxides; mines; mud; oxides; pH; pollution; reclamation; red mud; remediation; sea water; sedimentary rocks; sediments; storage; sulfides; tailings; waste management 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Programme & Abstracts - International Symposium on Environmental Geochemistry (ISEG), vol.5 Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title 5th international symposium on Environmental geochemistry; conference abstracts and scientific programme Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2006-033067; 5th international symposium on Environmental geochemistry, Cape Town, South Africa, April 2004; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5858 Serial 304
Permanent link to this record
 

 
Author (up) McGregor, R.
Title The use of an in-situ porous reactive wall to remediate a heavy metal plume Type Journal Article
Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal
Volume Issue Pages 1227-1232
Keywords mine water treatment
Abstract The oxidation of sulfide minerals at an ore transfer location in Western Canada has resulted in widespread contamination of underlying soil and groundwater. The oxidation of sulfide minerals has released sulfate [SO4] and heavy metals including cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn] into the groundwater. A compost-based sulfate-reducing reactive wall was installed in the path of the plume in an attempt to reduce the potential impact of the heavy metals on a down-gradient marine inlet. Monitoring of the reactive wall over a 21-month period has shown that Cu concentrations decrease from over 4000 mug/L to less than 5 mug/L. Cadmium, Ni, Pb, and Zn concentrations also show similar decreases with treated concentrations generally being observed near or below detection limits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The use of an in-situ porous reactive wall to remediate a heavy metal plume; Isip:000169875500122; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17109 Serial 166
Permanent link to this record
 

 
Author (up) Mitchell, P.
Title Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil Type Journal Article
Year 2000 Publication Environmental Issues and Management of Waste in Energy and Mineral Production Abbreviated Journal
Volume Issue Pages 307-314
Keywords mine water treatment
Abstract Klean Earth Environmental Company (KEECO) has developed the Silica Micro Encapsulation (SME) technology to treat heavy metals and radionuclides in water and soil. Unlike conventional neutralization/precipitation methods, SME encapsulates the contaminants in a permanent silica matrix resistant to degradation under even extreme environmental conditions. Encapsulated metals and radionuclides are effectively immobilized, minimising the potential for environmental contamination and impacts on human or ecosystem health. The effectiveness of SME has been proven through independent reviews, laboratory and field trials and commercial contracts, and the technology can be used to control and prevent acid drainage and the transport of soluble metals from mine sites, tailings areas, landfills and industrial sites. Successful demonstrations in the treatment of sediments and in brownfield redevelopment, treatment of metal-finishing wastewaters, and control of hazardous, low-level, and mixed waste at DOE/DOD sites and commercial nuclear power plants have also been undertaken. This paper describes the reactions involved in the SME process, the methods by which SME chemicals are introduced to various media, and recent project applications relevant to the cost effective remediation and prevention of environmental problems arising from energy and mineral production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Silica micro encapsulation: An innovative commercial technology for the treatment of metal and radionuclide contamination in water and soil; Isip:000088357300049; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17088 Serial 174
Permanent link to this record
 

 
Author (up) Mustikkamaki, U.-P.
Title Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation Type Journal Article
Year 2000 Publication Vuoriteollisuus = Bergshanteringen Abbreviated Journal
Volume 58 Issue 1 Pages 44-47
Keywords acid mine drainage anaerobic environment bacteria biodegradation environmental analysis Europe filters Finland metals Outokummun Mine peat pollutants pollution reduction Scandinavia sediments sulfate ion Western Europe zinc 22, Environmental geology
Abstract Acid mine drainage (AMD) is one of the most serious environmental problems in the metal-mining industry. AMD is formed by the chemical and bacterial oxidation of sulphide minerals, and it is characterized by low pH values and high sulphate and metals content. The most common method to treat AMD is chemical neutralization. The chemical treatment requires high capital and operating costs and its use is problematic at the closed mines sites. Outokumpu has studied and used sulphate reducing bacteria (SRB) as an alternative method for the treatment of AMD. SRB existing in many natural anaerobic aqueous environments can reduce sulphate to sulphide which precipitates metals as extremely insoluble metal sulphides. Full scale experiments were begun in summer 1995 in the Ruostesuo open pit (depth 46 m) by adding liquid manure as a source of bacteria and press-juice as a growth substrate. The average Zn content of the whole column has decreased from 3,5 mg/l to 0,8 mg/l and below 25 m zinc is 0 mg/l. Similar results have been reached with nickel in the Kotalahti old nickel mine, where bacteria were brought in 1996. We have found that the same bacterial mechanism acts in peat-limestone filters, which Outokumpu has built at several mine sites since 1993.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-9317 ISBN Medium
Area Expedition Conference
Notes Metallipitoisten vesien biologisesta kasittelysta Outokummun kaivoksilla. Metal content treated with biological methods at the Outokummun operation; 2001-069868; illus. incl. 3 tables Finland (FIN); GeoRef; Finnish Approved no
Call Number CBU @ c.wolke @ 16560 Serial 291
Permanent link to this record
 

 
Author (up) Rammlmair, D.; Grissemann, C.
Title Natural attenuation in slag heaps versus remediation Type Book Chapter
Year 2000 Publication Applied mineralogy in research, economy, technology, ecology and culture Abbreviated Journal
Volume Issue Pages 645-648
Keywords acid mine drainage; alteration; concentration; concepts; crust; deposition; design; development; diagenesis; exhalative processes; fines; fluvial features; ground water; leaching; metallurgy; mining; mining geology; mobilization; natural attenuation; physicochemical properties; Plantae; pollution; precipitation; remediation; rivers; slag; time scales; toxic materials; transportation; volatiles; wind transport 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor Rammlmair, D.; Mederer, J.; Oberthuer, T.; Heimann, R.B.; Pentinghaus, H.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9058091643 Medium
Area Expedition Conference
Notes Natural attenuation in slag heaps versus remediation; GeoRef; English; 2007-039910; Sixth international congress on Applied mineralogy in research, economy, technology, ecology, and culture, Gottingen, Federal Republic of Germany, July 17-19, 2000 References: 5; illus. Approved no
Call Number CBU @ c.wolke @ 5864 Serial 266
Permanent link to this record