toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Álvarez, R., Ordóñez, A., Martínez, T., Loredo, J., Pendás, F., & Younger, P. (2004). (P. Jarvis Adam, A. Dudgeon Bruce, & L. Younger Paul, Eds.). mine water 2004 – Proceedings International Mine Water Association Symposium. 2: University of Newcastle.
toggle visibility
Amacher, M. C., Brown, R. W., Kotuby-Amacher, J., & Willis, A. (1993). Adding sodium hydroxide to study metal removal in a stream affected by acid mine drainage. Research Paper, US Department of Agriculture, Forest Service, 465(17).
toggle visibility
Angelos, M. A. F. (2000). Rehabilitation options for a Finnish copper mine. International Conference on Practical Applications in Environmental Geotechnology Ecogeo 2000, 204, 207–214.
toggle visibility
Anonymous. (2004). Development of Integrated Passive Water Treatment Systems for the Treatment of Mine Waters. The @AusIMM bulletin, 2004(1), 58–62.
toggle visibility
Anonymous. (2003). Red menace -- Alumina waste products neutralised – As a result of the standard aluminium extraction process, a large amount of of highly alkaline 'red mud' is produced, containing various minerals left over from the bauxite, and this must be disposed of safely, treated or stored. Using a partial-neutralising process involving sea water, Virotec has developed an environmentally responsible process that turns the mud into a mild alkali that is very good at neutralising acid in, for example, acid mine waste. Materials world, 11(6), 22–25.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print