toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ueki, K.; Kotaka, K.; Itoh, K.; Ueki, A. url  openurl
  Title Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals Type Journal Article
  Year 1988 Publication Journal of Fermentation Technology Abbreviated Journal  
  Volume 66 Issue 1 Pages  
  Keywords mine water treatment  
  Abstract The use of an anaerobic digester slurry of cattle waste for the reclamation of acid mine water was examined. When the digester slurry was mixed with acid mine water, anaerobic digestion, including sulfate reduction and methanogenesis, was enhanced. In the mixture of acid mine water and the digester slurry, sulfate reduction proceeded without diminishing methanogenesis. The digester slurry and its supernatant (SDF-sup) showed a significant capacity to act as a strong alkaline reagent, and the pH of the acid mine water was markedly elevated by the addition of the digester slurry of SDF-sup even at the low ratio of 1% (v/v). Precipitation of heavy metals in the acid mine water occurred as the pH was elevated by the addition of SDF-sup. When the digester slurry was added at the ratio of 5% (v/v) to acid mine water which had been pretreated with SDF-sup, the rate of sulfate reduction increased with increasing the concentration of sulfate in the mixture up to about 1,400 mg·l-1. In acid mine water pretreated with SDF-sup and supplemented with the digester slurry at the ratio of 5% (v/v), the maximum amount of sulfate reduced within 20 d of incubation was about 1,000 mg·l-1, and the maximum rate of sulfate reduction was about 120 mg SO42-·l-1·d-1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0385-6380 ISBN Medium  
  Area Expedition Conference  
  Notes Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals; Amsterdam [u.a.] : Elsevier; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7036.pdf; Opac Approved no  
  Call Number CBU @ c.wolke @ 7036 Serial 75  
Permanent link to this record
 

 
Author (up) Van Hille, R.P.; Boshoff, G.A.; Rose, P.D.; Duncan, J.R. url  openurl
  Title A continuous process for the biological treatment of heavy metal contaminated acid mine water Type Journal Article
  Year 1999 Publication Resour. Conserv. Recycl. Abbreviated Journal  
  Volume 27 Issue 1-2 Pages 157-167  
  Keywords mine water treatment biological treatment heavy metal acid mine water alkaline precipitation green-algae chlorella  
  Abstract Alkaline precipitation of heavy metals from acidic water streams is a popular and long standing treatment process. While this process is efficient it requires the continuous addition of an alkaline material, such as lime. In the long term or when treating large volumes of effluent this process becomes expensive, with costs in the mining sector routinely exceeding millions of rands annually. The process described below utilises alkalinity generated by the alga Spirulina sp., in a continuous system to precipitate heavy metals. The design of the system separates the algal component from the metal containing stream to overcome metal toxicity. The primary treatment process consistently removed over 99% of the iron (98.9 mg/l) and between 80 and 95% of the zinc (7.16 mg/l) and lead (2.35 mg/l) over a 14-day period (20 l effluent treated). In addition the pH of the raw effluent was increased from 1.8 to over 7 in the post-treatment stream. Secondary treatment and polishing steps depend on the nature of the effluent treated. In the case of the high sulphate effluent the treated stream was passed into an anaerobic digester at a rate of 4 l/day. The combination of the primary and secondary treatments effected a removal of over 95% of all metals tested for as well as a 90% reduction in the sulphate load. The running cost of such a process would be low as the salinity and nutrient requirements for the algal culture could be provided by using tannery effluent or a combination of saline water and sewage. This would have the additional benefit of treating either a tannery or sewage effluent as part of an integrated process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Medium  
  Area Expedition Conference  
  Notes Jul; A continuous process for the biological treatment of heavy metal contaminated acid mine water; Isi:000081142100017; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9937.pdf; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 9937 Serial 26  
Permanent link to this record
 

 
Author (up) Waring, C.L.; Taylor, J.R. openurl 
  Title Type Book Whole
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 663-665  
  Keywords in-situ mine water treatment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Mine Water Association Place of Publication Ii Editor Fernández Rubio, R.  
  Language Summary Language Original Title  
  Series Editor Series Title Mine, Water & Environment Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes A new technique for building in-situ sub-surface hydrologic barriers: NBT; 1; AMD ISI | Wolkersdorfer; 3 Abb., 1 Tab. Approved no  
  Call Number CBU @ c.wolke @ 9947 Serial 218  
Permanent link to this record
 

 
Author (up) Whitehead, P.G. url  openurl
  Title Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project Type Journal Article
  Year 2005 Publication Science of the Total Environment Abbreviated Journal  
  Volume 338 Issue 1-2 Pages 15-21  
  Keywords mine water treatment  
  Abstract Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheat Jane Mine in Cornwall, UK. The plant consists of three separate systems; each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pre-treatment utilised to increase the pH of the influent minewater (pH<4): lime-dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pre-treatment. The Wheal Jane pilot plant offered a unique facility and a major research project was established to evaluate the pilot plant and study in detail the biological mechanisms and the geochemical and physical processes that control passive treatment systems. The project has led to data, knowledge, models and design criteria for the future design, planning and sustainable management of passive treatment systems. A multidisciplinary team of scientists and managers from the U.K. universities, the Environment Agency and the Mining Industry has been put together to obtain the maximum advantage from the excellent facilities facility at Wheal Jane. (C) 2004 Elseaier B.V All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Bioremediation of acid mine drainage: an introduction to the Wheal Jane wetlands project; Wos:000227130400003; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16972 Serial 116  
Permanent link to this record
 

 
Author (up) Wiessner, A. url  openurl
  Title The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke Type Journal Article
  Year 1998 Publication Colloids and Surfaces a-Physicochemical and Engineering Aspects Abbreviated Journal  
  Volume 139 Issue 1 Pages 91-97  
  Keywords mine water treatment  
  Abstract To study the functions of activated carbon and activated coke adsorption for the treatment of highly contaminated discolored industrial wastewater with a wide molecular size distribution of organic compounds, the deposited lignite pyrolysis wastewater from a filled open-cast coal mine was used for continuous and discontinuous experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke; Wos:000074411100012; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17147 Serial 133  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: