|   | 
Details
   web
Records
Author Cravotta, C.A., III; Trahan, M.K.
Title Limestone drains to increase pH and remove dissolved metals from acidic mine drainage Type Journal Article
Year 1999 Publication Appl. Geochem. Abbreviated Journal
Volume 14 Issue 5 Pages 581-606
Keywords manganese oxide redox processes sulfate waters iron-oxides adsorption ions oxidation surfaces environments aluminum
Abstract Despite encrustation by Fe and Al hydroxides, limestone can be effective for remediation of acidic mine drainage (AMD). Samples of water and limestone (CaCO3) were collected periodically for 1 a at 3 identical limestone-filled drains in Pennsylvania to evaluate the attenuation of dissolved metals and the effects of pH and Fe- and Al-hydrolysis products on the rate of CaCO3 dissolution. The influent was acidic and relatively dilute (pH < 4; acidity < 90 mg) but contained 1-4 mg . L-1 of O-2, Fe3+, Al3+ and Mn2+. The total retention time in the oxic limestone drains (OLDs) ranged from 1.0 to 3.1 hr. Effluent remained oxic (O-2 > 1 mg . L-1) but was near neutral (pH = 6.2-7.0); Fe and Al decreased to less than 5% of influent concentrations. As pH increased near the inflow, hydrous Fe and Al oxides precipitated in the OLDs, The hydrous oxides, nominally Fe(OH)(3) and Al(OH)(3), were visible as loosely bound, orange-yellow coatings on limestone near the inflow. As time elapsed, Fe(OH)(3) and Al(OH)(3) particles were transported downflow. The accumulation of hydrous oxides and elevated pH (> 5) in the downflow part of the OLDs promoted sorption and coprecipitation of dissolved Mn, Cu, Co, Ni and Zn as indicated by decreased concentrations of the metals in effluent and their enrichment relative to Fe in hydrous-oxide particles and coatings on limestone. Despite thick (similar to 1 mm) hydrous-oxide coatings on limestone near the inflow, CaCO3 dissolution was more rapid near the inflow than at downflow points within and the OLD where the limestone was not coated. The high rates of CaCO3 dissolution and Fe(OH3) precipitation were associated with the relatively low pH and high Fe3+ concentration near the inflow. The rate of CaCO3 dissolution decreased with increased pH and concentrations of Ca2+ and HCO3- and decreased Pco(2). Because overall efficiency is increased by combining neutralization and hydrolysis reactions, an OLD followed by a settling pond requires less land area than needed for a two-stagetreatment system consisting of an anoxic limestone drain and oxidation-settling pond or wetland. To facilitate removal of hydrous-oxide sludge, a perforated-pipe subdrain can be installed within an OLD. (C) 1999 Elsevier Science Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Jul; Limestone drains to increase pH and remove dissolved metals from acidic mine drainage; Isi:000080043300004; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10102.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17470 Serial 22
Permanent link to this record
 

 
Author Dill, S.; Cowan, J.; Wood, A.; Bowell, R.J.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 329-342
Keywords hydrogeology mining water sulfate oxidation pyrite corrosion economy membrane processes precipitation processes treatment
Abstract
Address
Corporate Author Thesis
Publisher Proceedings International Mine Water Association Symposium Place of Publication 2 Editor Nel Petrus Johannes, L.
Language Summary Language Original Title
Series Editor Series Title Mine Water and Environmental Impacts Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 062-02294-0-3 Medium
Area Expedition Conference
Notes A Review of Sulfate Removal Options from Mine Waters; 1; AMD ISI | Wolkersdorfer; FG 'de' Approved no
Call Number CBU @ c.wolke @ 9596 Serial 402
Permanent link to this record
 

 
Author Diz, H.R.
Title Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity Type Book Whole
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; copper; effluents; ferrous iron; heavy metals; iron; manganese; metals; nickel; oxidation; pH; pollution; precipitation; rates; tailings; temperature; waste water; zinc 22, Environmental geology
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Virginia Polytechnic Institute and State University, Place of Publication Blacksburg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Chemical and biological treatment of acid mine drainage for the removal of heavy metals and acidity; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6316 Serial 400
Permanent link to this record
 

 
Author Evangelou, V.P.
Title Potential microencapsulation of pyrite by artificial inducement of FePO (sub 4) coatings Type Book Chapter
Year 1994 Publication Special Publication – United States. Bureau of Mines, Report: BUMINES-SP-06B-94 Abbreviated Journal
Volume Issue Pages 96-103
Keywords acid mine drainage chemical reactions leaching oxidation pollutants pollution pyrite remediation sulfides tailings theoretical studies waste disposal weathering rinds 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings of the International land reclamation and mine drainage conference and Third international conference on The abatement of acidic drainage; Volume 2 of 4; Mine drainage Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Potential microencapsulation of pyrite by artificial inducement of FePO (sub 4) coatings; GeoRef; English; 2007-045209; International land reclamation and mine drainage conference; International conference on The abatement of acidic drainage, Pittsburgh, PA, United States, April 24-29, 1994 References: 11; illus. Approved no
Call Number CBU @ c.wolke @ 16711 Serial 386
Permanent link to this record
 

 
Author Evangelou, V.P.
Title Type Book Whole
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 293 pp
Keywords solution chemistry surface chemistry acid mine drainage (AMD) molecular oxidation mechanics microbial role, kinetics, control, ameliorates and limitations microencapsulation
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Pyrite oxidation and its control: solution chemistry, surface chemistry, acid mine drainage (AMD), molecular oxidation mechanisms, microbial role, kinetics, control, ameliorates and limitations, microencapsulation Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-8493-4732-7 Medium
Area Expedition Conference
Notes Pyrite oxidation and its control: solution chemistry, surface chemistry, acid mine drainage (AMD), molecular oxidation mechanisms, microbial role, kinetics, control, ameliorates and limitations, microencapsulation; Boca Raton, Fla. : CRC Press, cop. 1995; Opac Approved no
Call Number CBU @ c.wolke @ 6935 Serial 385
Permanent link to this record