|   | 
Details
   web
Records
Author Dunn, J.; Russell, C.; Morrissey, A.
Title Remediating historic mine sites in Colorado Type Journal Article
Year 1999 Publication Min. Eng. Abbreviated Journal
Volume 51 Issue 8 Pages 32-35
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage environmental effect remediation United States Colorado
Abstract This article provides examples of reclamation and remediation in Colorado watersheds. The projects were undertaken by the US Environmental Protection Agency (EPA) Region 8, in cooperation with the Colorado Division of Minerals and Geology (CDMG), Colorado Department of Public Health and Environment (CDPHE), US Forest Service (USFS), the Bureau of Land Management (BLM), Bureau of Reclamation (BOR) and the US Geological Survey (USGS). These agencies collaborated on the environmental problems at abandoned mines. These samples involved the interaction of surface and ground waters with sulfide-bearing rocks, mine workings and surface mine spoils that produce acid solutions charged with heavy metals that are toxic to organisms. In these examples, acid mine drainage from historic mines in Colorado has been approached cooperatively with stakeholders. Each example emphasizes one aspect of the three-stage process. These stages include characterization and prioritization, hydrologic controls and the evaluation of long-term remediation activities.
Address J. Dunn, US Environmental Protection Agency, Region 8, 999 18(th) St., Suite 500, Denver, CO 80202-2466, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Remediating historic mine sites in Colorado; 0434641; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17547 Serial 398
Permanent link to this record
 

 
Author Eger, P.; Melchert, G.; Wagner, J.
Title Using passive treatment systems for mine closure – A good approach or a risky alternative? Type Journal Article
Year 2000 Publication Min. Eng. Abbreviated Journal
Volume 52 Issue 9 Pages 78-83
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage decommissioning mine waste open pit mine pH remediation
Abstract In 1991, LTV Steel Mining decided to close an open-pit taconite mine in northeastern Minnesota using a passive-treatment approach consisting of limiting infiltration into the stockpiles and wetland treatment to remove metals. More than 50 Mt (55 million st) of sulfide-containing waste had been stockpiled adjacent to the mine during its 30 years of operation. Drainage from the stockpiles contained elevated levels of copper, nickel, cobalt and zinc. Nickel is the major trace metal in the drainages. Before the closure, the annual median concentrations ranged from 1.5 to 50 mg/L. Copper, cobalt and zinc are also present but they are generally less than 5% of the nickel values. Median pH levels range from 5 to 7.5, but most of the stockpile drainages have pH levels greater than 6.5. Based on the chemical composition of each stockpile, a cover material was selected. The higher the potential that a stockpile had to produce acid drainage, the lower the permeability of the capping material required. Covers ranged from overburden soil removed at the mine to a flexible plastic liner. Predictions of the reduction in infiltration ranged from 40% for the native soil to more than 90% for the plastic liner. Five constructed wetlands have been installed since 1992. They have removed 60% to 90% of the nickel in the drainages. Total capital costs for all the infiltration reduction and wetlands exceeded $6.5 million, but maintenance costs are less than 1% of those for an active treatment plant. Because mine-drainage problems can continue for more than 100 years, the lower annual operating costs should pay for the construction of the wetland-treatment systems within seven years.
Address P. Eger, Minnesota Dept. of Natural Rsrces., St. Paul, MN, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Using passive treatment systems for mine closure – A good approach or a risky alternative?; 2285715; United-States 19; Geobase Approved no
Call Number CBU @ c.wolke @ 17539 Serial 392
Permanent link to this record
 

 
Author Fisher, T.S.R.; Lawrence, G.A.
Title Treatment of acid rock drainage in a meromictic mine pit lake Type Journal Article
Year 2006 Publication Journal of environmental engineering Abbreviated Journal
Volume 132 Issue 4 Pages 515-526
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) meromictic lake acid mine drainage mine waste copper water pollution Bacteria microorganisms Canada Vancouver Island British Columbia North America
Abstract The Island Copper Mine pit near Port Hardy, Vancouver Island, B.C., Canada, was flooded in 1996 with seawater and capped with fresh water to form a meromictic (permanently stratified) pit lake of maximum depth 350 m and surface area 1.72 km2. The pit lake is being developed as a treatment system for acid rock drainage. The physical structure and water quality has developed into three distinct layers: a brackish and well-mixed upper layer; a plume stirred intermediate layer; and a thermally convecting lower layer. Concentrations of dissolved metals have been maintained well below permit limits by fertilization of the surface waters. The initial mine closure plan proposed removal of heavy metals by metal-sulfide precipitation via anaerobic sulfate-reducing bacteria, once anoxic conditions were established in the intermediate and lower layers. Anoxia has been achieved in the lower layer, but oxygen consumption rates have been less than initially predicted, and anoxia has yet to be achieved in the intermediate layer. If anoxia can be permanently established in the intermediate layer then biogeochemical removal rates may be high enough that fertilization may no longer be necessary. < copyright > 2006 ASCE.
Address Prof. G.A. Lawrence, Univ. of British Columbia, Vancouver, BC V6T 1Z4, Canada lawrence@civil.ubc.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-9372 ISBN Medium
Area Expedition Conference
Notes Apr.; Treatment of acid rock drainage in a meromictic mine pit lake; 2873922; United-States 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17494 Serial 72
Permanent link to this record
 

 
Author Hulshof, A.H.M.; Blowes, D.W.; Douglas Gould, W.
Title Evaluation of in situ layers for treatment of acid mine drainage: A field comparison Type Journal Article
Year 2006 Publication Water Res Abbreviated Journal
Volume 40 Issue 9 Pages 1816-1826
Keywords mine water Pollution and waste management non radioactive Groundwater problems and environmental effects acid mine drainage organic carbon oxidation microbial activity drainage groundwater pollution Bacteria microorganisms Contamination Groundwater Barriers Drainage Treatment
Abstract Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1 a-1, (5.2 mmol L-1 a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased δ13CDIC values from -3‰ to as low as -12‰ indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1 a-1 (52 mmol L-1 a-1), Fe concentrations decreased by 80–99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased δ13CDIC values, to as low as -22‰, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Medium
Area Expedition Conference
Notes May; Evaluation of in situ layers for treatment of acid mine drainage: A field comparison; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10040.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 10040 Serial 49
Permanent link to this record
 

 
Author Kingham, N.W.; Semenak, R.; Powell, G.; Way, S.
Title Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; Basin-Luttrell Pit; cost; environmental effects; leachate; Lewis and Clark County Montana; metals; Montana; osmosis; pollutants; pollution; precipitation; reverse osmosis; soils; sulfates; tailings; Ten Mile Creek; United States; waste rock; waste water; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reverse osmosis coupled with chemical precipitation treatment of acid mine leachate at the Basin-Luttrell Pit, Ten Mile Creek Site, Lewis and Clark County, Montana Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046128; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5610 Serial 331
Permanent link to this record