|   | 
Details
   web
Record
Author (up) Lee, B.H.
Title Constructed wetlands: Treatment of concentrated storm water runoff (Part A) Type Journal Article
Year 2006 Publication Environmental Engineering Science Abbreviated Journal
Volume 23 Issue 2 Pages 320-331
Keywords mine water treatment
Abstract The aim of this research was to assess the treatment efficiencies for gully pot liquor of experimental vertical-flow constructed wetland filters containing Phragmites australis (Cav.) Trin. ex Steud. (common reed) and filter media of different adsorption capacities. Six out of 12 filters received inflow water spiked with metals. For 2 years, hydrated nickel and copper nitrate were added to sieved gully pot liquor to simulate contaminated primary treated storm runoff. For those six constructed wetland filters receiving heavy metals, an obvious breakthrough of dissolved nickel was recorded after road salting during the first winter. However, a breakthrough of nickel was not observed, since the inflow pH was raised to eight after the first year of operation. High pH facilitated the formation of particulate metal compounds such as nickel hydroxide. During the second year, reduction efficiencies of heavy metal, 5-days at 20 degrees C N-Allylthiourea biochemical oxygen demand (BOD) and suspended solids (SS) improved considerably. Concentrations of BOD were frequently < 20 mg/L. However, concentrations for SS were frequently > 30 mg/L. These are the two international thresholds for secondary wastewater treatment. The BOD removal increased over time due to biomass maturation, and the increase of pH. An analysis of the findings with case-based reasoning can be found in the corresponding follow-up paper (Part B).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Constructed wetlands: Treatment of concentrated storm water runoff (Part A); Wos:000236600700007; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16932 Serial 112
Permanent link to this record