|   | 
Details
   web
Records
Author Dillard, G.
Title A win-win way to clean up by changing ionic state, new process can precipitate heavy metals Type Journal Article
Year 2000 Publication Pay Dirt Abbreviated Journal
Volume 734 Issue Pages 10-11
Keywords acid mine drainage; California; chemical composition; companies; environmental analysis; environmental management; heavy metals; ion exchange; ions; metal ores; metals; mining; pollutants; pollution; precipitation; processes; remediation; soils; surface water; United States; water treatment 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference
Notes A win-win way to clean up by changing ionic state, new process can precipitate heavy metals; 2004-029026; illus. United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5822 Serial 401
Permanent link to this record
 

 
Author Dill, S.; Cowan, J.; Wood, A.; Bowell, R.J.
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 329-342
Keywords hydrogeology mining water sulfate oxidation pyrite corrosion economy membrane processes precipitation processes treatment
Abstract
Address
Corporate Author Thesis
Publisher Proceedings International Mine Water Association Symposium Place of Publication 2 Editor Nel Petrus Johannes, L.
Language Summary Language Original Title
Series Editor Series Title Mine Water and Environmental Impacts Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 062-02294-0-3 Medium
Area (up) Expedition Conference
Notes A Review of Sulfate Removal Options from Mine Waters; 1; AMD ISI | Wolkersdorfer; FG 'de' Approved no
Call Number CBU @ c.wolke @ 9596 Serial 402
Permanent link to this record
 

 
Author Cram, J.C.
Title Diversion well treatment of acid water, Lick Creek, Tioga County, PA Type Book Whole
Year 1996 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage acid rain atmospheric precipitation carbonate rocks diversion wells Lick Creek limestone Pennsylvania pH pollution rain sedimentary rocks surface water Tioga County Pennsylvania United States water quality water treatment wells 22, Environmental geology
Abstract Diversion wells implement a fluidized bed of limestone for the treatment of acid water resulting from acid mine drainage or acid precipitation. This study was undertaken to better understand the operation of diversion wells and to define the physical and chemical factors having the greatest impact on the neutralization performance of the system. The study site was located near Lick Creek, a tributary stream of Babb Creek, near the Village of Arnot in Tioga County, Pennsylvania. Investigative methods included collection and analysis of site water quality and limestone data and field study of this as well as other diversion well sites. Analysis of data led to these general conclusions: The site received surface water influenced by three primary sources 1) precipitation, 2) mine drainage baseflow, and 3) melted snow. Water mostly influenced by precipitation events and mine drainage baseflow was more acidic than water influenced by melting snow conditions. The diversion wells were generally able to treat only half or less of the total stream flow of Lick Creek and under extremely high flow conditions the treatment provided was minimal. A range of flow conditions were identified which produced the best performance for the two diversion wells. Treatment produced by the system decreased through the loading cycle and increases to a maximum value after each weekly refilling of limestone. Fine grained sediment in the stream was found to be limestone of the same general composition as the material placed within the wells. Neutralization of acid water was largely due to microscopic particles rather than the limestone sediment discharged to the stream. Additional downstream buffering due to the limestone sediment physically discharged from the vessels was not apparent. Diversion well systems are inexpensive and simple to construct. In addition, the systems were found to be highly reliable and able to effectively treat acid water resulting from mine drainage and acid precipitation. Diversion wells provide better treatment when the treatment site is located at the source of the acidity (such as a mine discharge), rather than at the receiving stream. Systems should be designed with 15 to 20 feet of hydraulic head and the site must have year-round access. Diversion well systems require weekly addition of limestone gravel to the vessels to facilitate continual treatment. A great deal of commitment is necessary to maintain a diversion well system for long periods of time. These systems are more economical and require less attention that conventional chemical treatment of acid water. However, these systems require more attention that traditional passive treatment methods for treatment of acid, including mine drainage.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Pennsylvania State University at University Park, Place of Publication University Park Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference
Notes Diversion well treatment of acid water, Lick Creek, Tioga County, PA; GeoRef; English; References: 49; illus. Approved no
Call Number CBU @ c.wolke @ 16652 Serial 411
Permanent link to this record
 

 
Author Carlson, L.; Kumpulainen, S.
Title Retention of harmful elements by ochreous precipitates of iron Type Journal Article
Year 2001 Publication Tutkimusraportti Geologian Tutkimuskeskus Abbreviated Journal
Volume - Issue 154 Pages 30-33
Keywords Surface water quality Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 9) geological abstracts: environmental geology (72 14 2) iron oxide precipitation chemistry sulfate arsenate heavy metal pH water pollution remediation
Abstract The capability of soil fines to fix harmful elements, e.g. heavy metals and arsenic, depends on specific surface area and other characteristics, such as surface charge. In the pH-range typical of natural waters (pH 5,5-7,5), the surfaces of fine-grained silicate particles and manganese oxides are negatively charged; consequently cations, such as heavy metals, fix effectively to them. The iron oxide surfaces are usually positively charged and typically fix anions, such as sulphate and arsenate. Retention of anions is especially extensive to precipitates formed from acid mine drainage (pH 2,5-5,0). For example, precipitates found at Paroistenjarvi mine, Finland, contain more than 70 g/kg of arsenic (dry matter). Adsorbed anions, e.g. sulphate, enhance the capacity of precipitate to fix heavy metal cations in low-pH environments.
Address L. Carlson, Tehtaankatu 25 A 4, Helsinki FIN-00150, Finland liisa.carlson@kolumbus.fi
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0781-4240 ISBN Medium
Area (up) Expedition Conference
Notes Retention of harmful elements by ochreous precipitates of iron; 2392974; Oksidiset rautasaostumat haitallisten aineiden pidattajina. Finland 7; Geobase Approved no
Call Number CBU @ c.wolke @ 17533 Serial 421
Permanent link to this record
 

 
Author Bowell, R.J.
Title Sulphate and salt minerals; the problem of treating mine waste Type Journal Article
Year 2000 Publication Mining Environmental Management Abbreviated Journal
Volume 8 Issue 3 Pages 11-13
Keywords acid mine drainage; acidification; decontamination; discharge; dissolved materials; ecology; effluents; geomembranes; lime; mines; pollution; precipitation; protection; recycling; reverse osmosis; soils; surface water; suspended materials; toxic materials; waste disposal; waste management 22, Environmental geology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-4218 ISBN Medium
Area (up) Expedition Conference
Notes Sulphate and salt minerals; the problem of treating mine waste; 2000-062783; illus. incl. 4 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5834 Serial 440
Permanent link to this record