|   | 
Details
   web
Records
Author Gale, J.E.; MacLeod, R.; Bursey, G.
Title The role of hydrogeology in developing effective mine water control programs in fractured porous rocks Resources development and Earth science; environmental and economic issues (Abstract) Type Book Chapter
Year 1999 Publication Atlantic Geology Abbreviated Journal
Volume Issue Pages 172
Keywords anisotropy; bedrock; controls; fractured materials; fractures; geometry; ground water; heterogeneity; mine dewatering; mines; mining; mining geology; numerical models; permeability; porous materials; remediation; three-dimensional models; underground mining; velocity 21, Hydrogeology
Abstract
Address (down)
Corporate Author Thesis
Publisher Place of Publication 35 Editor Pickerill, R.K.; Barr, S.M.; Williams, G.L.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The role of hydrogeology in developing effective mine water control programs in fractured porous rocks Resources development and Earth science; environmental and economic issues (Abstract); GeoRef; English; 2000-073328; Geological Association of Canada, 1999 annual technical meeting, Newfoundland Section, Saint Johns, NL, Canada, Feb. 22-23, 1999 Approved no
Call Number CBU @ c.wolke @ 5958 Serial 69
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Book Chapter
Year 1997 Publication AAPG Eastern Section and the Society for Organic Petrology joint meeting; abstracts Abbreviated Journal
Volume Issue Pages 1545
Keywords acid mine drainage aerobic environment air-water interface anaerobic environment attenuation buffers constructed wetlands controls diffusion iron manganese metals mineral composition pollution precipitation processes SEM data solubility solution sulfate ion sulfur wetlands X-ray diffraction data 22, Environmental geology
Abstract The use of constructed wetlands for acid mine drainage amelioration has become a popular alternative to conventional treatment methods, however, the metal attenuation processes of these systems are poorly understood. Precipitates from biotic and abiotic zones of a staged constructed wetland treating high metal load (approx. equal to 1000 mg L (super -1) ) and low pH (approx. 3.0) acid mine drainage were characterized by chemical dissolution, x-ray diffraction, thermal analysis and scanning electron microscopy. Characterization of abiotic/aerobic zones within the treatment system suggest the presence of crystalline iron oxides and hydroxides such as hematite, lepidocrocite, goethite, and jarosite. At the air/water interface of initial abiotic treatment zones, SO (sub 4) /Fe ratios were low enough (<2.0) for the formation of jarosite and goethite, but as the ratio increased due to treatment and subsequent reductions in iron concentration, jarosite was transformed to other Fe-oxyhydroxysulfates and goethite formation was inhibited. In addition, elevated pH conditions occurring in the later stages of treatment promoted the formation of amorphous iron oxyhydroxides. Biotic wetland cell substrate characterizations suggest the presence of amorphous iron minerals such as ferrihydrite and Fe(OH) (sub 3) . Apparently, high Fe (super 3+) activity, low Eh and low oxygen diffusion rates in the anaerobic subsurface environment inhibit the kinetics of crystalline iron precipitation. Some goethite, lepidocrocite and hematite, however, were observed near the surface in biotic areas and are most likely attributable to increased oxygen levels from surface aeration and/or oxygen transport by plant roots. Alkalinity generation from limestone dissolution within the substrate and bacterially mediated sulfate reduction also has a significant role on the mineral retention process. The formation of gypsum, rhodochrocite and siderite are by-products of alkalinity generating reactions in this system and may have an impact on S, Mn, and Fe solubility controls. Moreover, the buffering of acidity through excess alkalinity appears to facilitate the precipitation and retention of metals within the system.
Address (down)
Corporate Author Thesis
Publisher AAPG Bulletin Place of Publication 81 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; GeoRef; English; 1997-067790; AAPG Eastern Section and the Society for Organic Petrology joint meeting, Lexington, KY, United States, Sep. 27-30, 1997 Approved no
Call Number CBU @ c.wolke @ 16630 Serial 70
Permanent link to this record
 

 
Author Yernberg, W.R.
Title Improvements seen in acid-mine-drainage technology Type Journal Article
Year 2000 Publication Min. Eng. Abbreviated Journal
Volume 52 Issue 9 Pages 67-70
Keywords acid mine drainage; bacteria; chemical weathering; coal mines; Colorado; copper ores; effects; geochemistry; hydrogen; inorganic acids; international cooperation; ions; lead ores; medical geology; metal ores; mines; molybdenum ores; oxidation; pH; pollution; prediction; pyrite; reclamation; remediation; research; risk assessment; silicates; soil treatment; solid waste; sulfides; sulfuric acid; Summitville Mine; tailings; tailings ponds; technology; United States; waste disposal; weathering; zinc ores 22, Environmental geology
Abstract
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Improvements seen in acid-mine-drainage technology; 2000-069686; illus. incl. sect., sketch map United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5808 Serial 73
Permanent link to this record
 

 
Author Wilmoth, R.C.
Title Type Book Whole
Year 1973 Publication Abbreviated Journal
Volume Issue Pages 159 pp
Keywords acid mine drainage
Abstract EPA 670 2 73 100 Spiral-wound reverse osmosis systems were tested on four different acid mine drainage discharges in west virginia and pennsylvania. Comparison studies were made of the hollow-fiber, tubular, and spiral-wound systems at a ferrous iron acid discharge; and of hollow-fiber and spiral-wound systems at a ferric iron acid discharge. At all sites, the limiting factor in high recovery operation was calcium sulfate insolubility. An empirical formula was developed for predicting maximum recovery. Application of reverse osmosis was demonstrated to be technically feasible for a large percentage of acid mine drainage discharges. A process called 'neutrolisis' was developed in which the reverse osmosis brine is neutralized and clarified, and the supernatant recycled to the influent to the reverse osmosis unit. In this manner, the neutrolosis process discharges only a high quality product water and a neutralized sludge. Neutrolosis recoveries as high as 98.8 percent were achieved at a ferric iron acid discharge site. (epa)
Address (down)
Corporate Author Thesis
Publisher U.S. Government Print. Offfice Place of Publication Washington Editor
Language Summary Language Original Title
Series Editor Series Title Environmental Protection Agency, Technology Series Report Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Applications of reverse osmosis to acid mine drainage treatment; 99; AMD ISI | Wolkersdorfer; TUB München Approved no
Call Number CBU @ c.wolke @ 9961 Serial 74
Permanent link to this record
 

 
Author Ueki, K.; Kotaka, K.; Itoh, K.; Ueki, A.
Title Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals Type Journal Article
Year 1988 Publication Journal of Fermentation Technology Abbreviated Journal
Volume 66 Issue 1 Pages
Keywords mine water treatment
Abstract The use of an anaerobic digester slurry of cattle waste for the reclamation of acid mine water was examined. When the digester slurry was mixed with acid mine water, anaerobic digestion, including sulfate reduction and methanogenesis, was enhanced. In the mixture of acid mine water and the digester slurry, sulfate reduction proceeded without diminishing methanogenesis. The digester slurry and its supernatant (SDF-sup) showed a significant capacity to act as a strong alkaline reagent, and the pH of the acid mine water was markedly elevated by the addition of the digester slurry of SDF-sup even at the low ratio of 1% (v/v). Precipitation of heavy metals in the acid mine water occurred as the pH was elevated by the addition of SDF-sup. When the digester slurry was added at the ratio of 5% (v/v) to acid mine water which had been pretreated with SDF-sup, the rate of sulfate reduction increased with increasing the concentration of sulfate in the mixture up to about 1,400 mg·l-1. In acid mine water pretreated with SDF-sup and supplemented with the digester slurry at the ratio of 5% (v/v), the maximum amount of sulfate reduced within 20 d of incubation was about 1,000 mg·l-1, and the maximum rate of sulfate reduction was about 120 mg SO42-·l-1·d-1.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0385-6380 ISBN Medium
Area Expedition Conference
Notes Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals; Amsterdam [u.a.] : Elsevier; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7036.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7036 Serial 75
Permanent link to this record