|   | 
Details
   web
Records
Author Foucher, S.; Battaglia-Brunet, F.; Ignatiadis, I.; Morin, D.
Title Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery Type Journal Article
Year 2001 Publication Chemical Engineering Science Abbreviated Journal
Volume 56 Issue 4 Pages 1639-1645
Keywords Acid mine drainage Sulfate-reducing bacteria Sulfide precipitation Hydrogen transfer Fixed bed column reactor
Abstract Acid-mine drainage can contain high concentrations of heavy metals and release of these contaminants into the environment is generally avoided by lime neutralization. However, this classical treatment is expensive and generates large amounts of residual sludge. The selective precipitation of metals using H2S produced biologically by sulfate-reducing bacteria has been proposed as an alternative process. Here, we report on experiments using real effluent from the disused Chessy-les-Mines mine-site at the laboratory pilot scale. A fixed-bed bioreactor, fed with an H2/CO2 mixture, was used in conjunction with a gas stripping column. The maximum rate of hydrogen transfer in the bioreactor was determined before inoculation. kLa was deduced from measurements of O2 using Higbie and Danckwert's models which predict a dependence on diffusivity. The dynamic method of physical absorption and desorption was used. The maximum rate of H2 transfer suggests that this step should not be a limiting factor. However, an increase in H2 flow rate was observed to induce an increase in sulfate reduction rate. For the precipitation step, the gas mixture from the bioreactor was bubbled into a stirred reactor fed with the real effluent. Cu and Zn could be selectively recovered at pH=2.8 and pH=3.5, respectively. Other impurities such as Ni and Fe could also be removed at pH=6 by sulfide precipitation. Part of the outlet stream from the bioreactor was used to regulate and maintain the pH during sulfide precipitation by feeding the outlet stream back into the bioreactor. The replacement of synthetic medium with real effluent had a positive effect on sulfate reduction rate which increased by 30-40%. This improvement in bacterial efficiency may be related to the large range of oligo-elements provided by the mine-water. The maximum sulfate reduction rate observed with the real effluent was 200 mgl-1 h-1, corresponding to a residence time of 0.9 day. A preliminary cost estimation based on a treatment rate of 5 m3 h-1 of a mine effluent containing 5 gl-1 SO42- is presented.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2509 ISBN Medium
Area Expedition Conference
Notes Feb.; Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10064.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 10064 Serial 54
Permanent link to this record
 

 
Author Kuyucak, N.
Title Mining, the Environment and the Treatment of Mine Effluents Type Journal Article
Year 1998 Publication Int. J. Environ. Pollut. Abbreviated Journal
Volume 10 Issue 2 Pages 315-325
Keywords mine water treatment acid mine drainage high density sludge lime neutralization mining environment passive treatment sulfate-reducing bacteria
Abstract The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning. In particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterized by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4352 ISBN Medium
Area Expedition Conference
Notes Mining, the Environment and the Treatment of Mine Effluents; Isi:000078420600009; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17477 Serial 56
Permanent link to this record
 

 
Author Yernberg, W.R.
Title Improvements seen in acid-mine-drainage technology Type Journal Article
Year 2000 Publication Min. Eng. Abbreviated Journal
Volume 52 Issue 9 Pages 67-70
Keywords acid mine drainage; bacteria; chemical weathering; coal mines; Colorado; copper ores; effects; geochemistry; hydrogen; inorganic acids; international cooperation; ions; lead ores; medical geology; metal ores; mines; molybdenum ores; oxidation; pH; pollution; prediction; pyrite; reclamation; remediation; research; risk assessment; silicates; soil treatment; solid waste; sulfides; sulfuric acid; Summitville Mine; tailings; tailings ponds; technology; United States; waste disposal; weathering; zinc ores 22, Environmental geology
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Improvements seen in acid-mine-drainage technology; 2000-069686; illus. incl. sect., sketch map United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5808 Serial 73
Permanent link to this record
 

 
Author Blowes, D.W.; Bain, J.G.; Smyth, D.J.; Ptacek, C.J.; Jambor, J.L.; Blowes, D.W.; Ritchie, A.I.M.
Title Treatment of mine drainage using permeable reactive materials Type Journal Article
Year 2003 Publication Environmental Aspects of Mine Wastes Abbreviated Journal
Volume 31 Issue Pages 361-376
Keywords acid mine drainage; acidification; aquatic environment; aquifer vulnerability; aquifers; bacteria; biodegradation; Canada; case studies; chemical reactions; Cochrane District Ontario; concentration; damage; degradation; disposal barriers; Eastern Canada; effluents; environmental analysis; ferric iron; Fry Canyon; ground water; iron; Kidd Creek Site; metal ores; metals; mines; models; Monticello Canyon; Ontario; pollution; preferential flow; reactive barriers; remediation; sediments; solid waste; sulfate ion; sulfates; sulfides; tailings; Timmins Ontario; United States; uranium ores; Utah; waste disposal; waste management; waste rock mine water treatment
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0144-7815 ISBN Medium
Area Expedition Conference
Notes Treatment of mine drainage using permeable reactive materials; Ccc:000186842900017; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7910 Serial 182
Permanent link to this record
 

 
Author Scharp, R.A.; Kawahara, F.; Burckle, J.; Allan, J.; Govind, R.
Title Recovery of metals from acid mine drainage Hardrock mining 2002; issues shaping the industry Type Book Chapter
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage; bacteria; Berkeley Pit; Butte Montana; cost; decontamination; metals; mining; Montana; pH; pollution; recovery; remediation; Silver Bow County Montana; smelting; sulfates; United States 22, Environmental geology
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recovery of metals from acid mine drainage Hardrock mining 2002; issues shaping the industry; GeoRef; English; 2007-046147; Hardrock mining 2002; issues shaping the industry, Westminster, CO, United States, May 7-9, 2002 U. S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States Approved no
Call Number CBU @ c.wolke @ 5614 Serial 251
Permanent link to this record