|   | 
Details
   web
Records
Author Akcil, A.; Koldas, S.
Title Acid Mine Drainage (AMD): causes, treatment and case studies Type Journal Article
Year 2006 Publication J. Cleaner Prod. Abbreviated Journal
Volume 14 Issue 12-13 Pages 1139-1145
Keywords contamination effluents government industrial pollution industrial waste mining industry research initiatives wastewater treatment acid mine drainage environmental problems mining industry government research initiatives contamination civil engineering mining quarrying activity environmental impact acid generating process acid drainage migration prevention measures effluent treatment chemical treatment biological treatment Manufacturing and Production Entwässern=Gelände Umweltbelastung Bauingenieurwesen Bergbau Sickerwasser Steinbruch Säureproduktion Neutralisation Bergbauindustrie technische Forschung Ingenieurswissenschaft Steinbruchabbau Acid Mine Drainage Mining Environmental Chemical and biological treatment
Abstract This paper describes Acid Mine Drainage (AMD) generation and its associated technical issues. As AMD is recognized as one of the more serious environmental problems in the mining industry, its causes, prediction and treatment have become the focus of a number of research initiatives commissioned by governments, the mining industry, universities and research establishments, with additional inputs from the general public and environmental groups. In industry, contamination from AMD is associated with construction, civil engineering mining and quarrying activities. Its environmental impact, however, can be minimized at three basic levels: through primary prevention of the acid-generating process; secondary control, which involves deployment of acid drainage migration prevention measures; and tertiary control, or the collection and treatment of effluent.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Acid Mine Drainage (AMD): causes, treatment and case studies; Science Direct Approved no
Call Number CBU @ c.wolke @ 17462 Serial 36
Permanent link to this record
 

 
Author Evangelou, V.P.
Title Pyrite microencapsulation technologies: Principles and potential field application Type Journal Article
Year 2001 Publication Ecological Engineering Abbreviated Journal
Volume 17 Issue 2-3 Pages 165-178
Keywords mine water treatment Acid mine drainage Acidity Alkalinity Amelioration Coating Oxidation Surface reactions
Abstract In nature, pyrite is initially oxidized by atmospheric O2, releasing acidity and Fe2+. At pH below 3.5, Fe2+ is rapidly oxidized by T. ferrooxidans to Fe3+, which oxidizes pyrite at a much faster rate than O2. Commonly, limestone is used to prevent pyrite oxidation. This approach, however, has a short span of effectiveness because after treatment the surfaces of pyrite particles remain exposed to atmospheric O2 and oxidation continuous abiotically. Currently, a proposed mechanism for explaining non-microbial pyrite oxidation in high pH environments is the involvement of OH- in an inner-sphere electron-OH exchange between pyrite/surface-exposed disulfide and pyrite/surface-Fe(III)(OH)n3-n complex and/or formation of a weak electrostatic pyrite/surface-CO3 complex which enhances the chemical oxidation of Fe2+. The above infer that limestone application to pyritic geologic material treats only the symptoms of pyrite oxidation through acid mine drainage neutralization but accelerates non-microbial pyrite oxidation. Therefore, only a pyrite/surface coating capable of inhibiting O2 diffusion is expected to control long-term oxidation and acid drainage production. The objective of this study was to examine the feasibility in controlling pyrite oxidation by creating, on pyrite surfaces, an impermeable phosphate or silica coating that would prevent either O2 or Fe3+ from further oxidizing pyrite. The mechanism underlying this coating approach involves leaching mine waste with a coating solution composed of H2O2 or hypochlorite, KH2PO4 or H4SiO4, and sodium acetate (NaAC) or limestone. During the leaching process, H2O2 or hypochlorite oxidizes pyrite and produces Fe3+ so that iron phosphate or iron silicate precipitates as a coating on pyrite surfaces. The purpose of NaAC or limestone is to eliminate the inhibitory effect of the protons (produced during pyrite oxidation) on the precipitation of iron phosphate or silicate and to generate iron-oxide pyrite coating, which is also expected to inhibit pyrite oxidation. The results showed that iron phosphate or silicate coating could be established on pyrite by leaching it with a solution composed of: (1) H2O2 0.018-0.16 M; (2) phosphate or silicate 10-3 to 10-2 M; (3) coating-solution pH [approximate]5-6; and (4) NaAC as low as 0.01 M. Leachates from column experiments also showed that silicate coatings produced the least amount of sulfate relative to the control, limestone and phosphate treatments. On the other hand, limestone maintained the leachate near neutral pH but produced more sulfate than the control.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8574 ISBN Medium
Area Expedition Conference
Notes July 01; Pyrite microencapsulation technologies: Principles and potential field application; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10063.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 10063 Serial 37
Permanent link to this record
 

 
Author Burgess, J.E.; Stuetz, R.M.
Title Activated Sludge for the Treatment of Sulphur-rich Wastewaters Type Journal Article
Year 2002 Publication Miner. Eng. Abbreviated Journal
Volume 15 Issue 11 Pages 839-846
Keywords acid rock drainage biooxidation biotechnology environmental waste processing acid-mine drainage sulfate-reducing bacteria biological treatment waste-water metals acclimation remediation oxidation reduction removal
Abstract The aim of this investigation was to assess the potential of activated sludge for the remediation of sulphur-rich wastewaters. A pilot-scale activated sludge plant was acclimatised to a low load of sulphide and operated as a flow-through unit. Additional sludge samples from different full-scale plants were compared with the acclimatised and unacclimatised sludges using batch absorption tests. The effects of sludge source and acclimatisation on the ability of the sludge to biodegrade high loads of sulphide were evaluated. Acclimatisation to low-sulphide concentrations enabled the sludge to degrade subsequent high loads which were toxic to unacclimatised sludge. Acclimatisation was seen to be an effect of selection pressure on the biomass, suggesting that the treatment capability of activated sludge will develop after acclimation, indicating potential for treatment of acid mine drainage (AMD) by a standard wastewater treatment process. Existing options for biological treatment of AMD are described and the potential of activated sludge treatment for AMD discussed in comparison with existing technologies. (C) 2002 Elsevier Science Ltd.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-6875 ISBN Medium
Area Expedition Conference
Notes Nov.; Activated Sludge for the Treatment of Sulphur-rich Wastewaters; Isi:000179970500009; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10093.pdf; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 10093 Serial 40
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J.
Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
Year 2006 Publication Appl. Geochem. Abbreviated Journal
Volume 21 Issue 12 Pages 2188-2200
Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry
Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no
Call Number CBU @ c.wolke @ 17248 Serial 44
Permanent link to this record
 

 
Author Blowes, D.W.; Ptacek, C.J.; Benner, S.G.; McRae, C.W.T.; Bennett, T.A.; Puls, R.W.
Title Treatment of inorganic contaminants using permeable reactive barriers Type Journal Article
Year 2000 Publication J Contam Hydrol Abbreviated Journal
Volume 45 Issue 1-2 Pages 123-137
Keywords acid mine drainage; adsorption; agricultural waste; aquifers; chemical reactions; chromium; concentration; contaminant plumes; decontamination; disposal barriers; dissolved materials; drainage; ground water; heavy metals; metals; nitrate ion; nutrients; permeability; phosphate ion; pollution; pump-and-treat; remediation; sulfate ion; waste disposal; water treatment mine water treatment Remediation Groundwater Metals Nutrients Radionuclides
Abstract Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the potential for treatment of a large number of inorganic contaminants, including As, Cd, Cr, Cu, Hg, Fe, Mn, Mo, Ni, Pb, Se, Tc, U, V, NO3, PO4 and SO4. Small-scale field studies have demonstrated treatment of Cd, Cr, Cu, Fe, Ni, Pb, NO3, PO4 and SO4. Permeable reactive barriers composed of zero-valent iron have been used in full-scale installations for the treatment of Cr, U, and Tc. Solid-phase organic carbon in the form of municipal compost has been used to remove dissolved constituents associated with acid-mine drainage, including SO4, Fe, Ni, Co and Zn. Dissolved nutrients, including NO3 and PO4, have been removed from domestic septic-system effluent and agricultural drainage.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Medium
Area Expedition Conference
Notes Sept.; Treatment of inorganic contaminants using permeable reactive barriers; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/9401.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 9401 Serial 46
Permanent link to this record