|   | 
Details
   web
Records
Author Coulton, R.; Bullen, C.; Hallett, C.
Title The design and optimisation of active mine water treatment plants Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 273-280
Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage
Abstract This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.
Address (down) R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17513 Serial 59
Permanent link to this record
 

 
Author Fisher, T.S.R.; Lawrence, G.A.
Title Treatment of acid rock drainage in a meromictic mine pit lake Type Journal Article
Year 2006 Publication Journal of environmental engineering Abbreviated Journal
Volume 132 Issue 4 Pages 515-526
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) meromictic lake acid mine drainage mine waste copper water pollution Bacteria microorganisms Canada Vancouver Island British Columbia North America
Abstract The Island Copper Mine pit near Port Hardy, Vancouver Island, B.C., Canada, was flooded in 1996 with seawater and capped with fresh water to form a meromictic (permanently stratified) pit lake of maximum depth 350 m and surface area 1.72 km2. The pit lake is being developed as a treatment system for acid rock drainage. The physical structure and water quality has developed into three distinct layers: a brackish and well-mixed upper layer; a plume stirred intermediate layer; and a thermally convecting lower layer. Concentrations of dissolved metals have been maintained well below permit limits by fertilization of the surface waters. The initial mine closure plan proposed removal of heavy metals by metal-sulfide precipitation via anaerobic sulfate-reducing bacteria, once anoxic conditions were established in the intermediate and lower layers. Anoxia has been achieved in the lower layer, but oxygen consumption rates have been less than initially predicted, and anoxia has yet to be achieved in the intermediate layer. If anoxia can be permanently established in the intermediate layer then biogeochemical removal rates may be high enough that fertilization may no longer be necessary. < copyright > 2006 ASCE.
Address (down) Prof. G.A. Lawrence, Univ. of British Columbia, Vancouver, BC V6T 1Z4, Canada lawrence@civil.ubc.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-9372 ISBN Medium
Area Expedition Conference
Notes Apr.; Treatment of acid rock drainage in a meromictic mine pit lake; 2873922; United-States 38; Geobase Approved no
Call Number CBU @ c.wolke @ 17494 Serial 72
Permanent link to this record
 

 
Author Vegt, A.L. de; Bayer, H.G.; Buisman, C.J.
Title Biological sulfate removal and metal recovery from mine waters Type Journal Article
Year 1998 Publication Min. Eng. Abbreviated Journal
Volume 50 Issue 11 Pages 67-70
Keywords Bergbau Erzbergbau Verfahrenstechnik Biotechnologie Wasseraufbereitung Abwasserreinigung Schwermetalle Schwefelwasserstoff Sulfat Sulfid biologisches Verfahren Schwermetallabtrennung Grubenwasser
Abstract Metalle und Sulfat können aus Grubenwässern in einem zweistufigen biologischen Prozeß entfernt werden. In der ersten Stufe wird das Sulfat durch Bakterien zu Schwefelwasserstoff reduziert. Dieser reagiert mit den gelösten Metallen zu unlöslichem Metallsulfid. Im zweiten Schritt wird überschüssiger Schwefelwasserstoff durch Bakterien zu elementarem Schwefel oxidiert. Eine nach diesem Verfahren arbeitende Anlage wurde 1992 durch die Budelco Zinc Refinery in den Niederlanden installiert. Diese verarbeitet täglich 5000 m(exp 3) Gundwasser. Zur Weiterentwicklung des Verfahrens für die Entfernung von Metallen und Sulfat aus Grundwasser und zur gezielten Kupfergewinnung aus Laugungswässern wurde 1995 in der Kupfergrube Bingham Canyon Utah, USA eine entsprechende Pilotanlage in Betrieb genommen. Anhand dieser Pilotanlage werden der Verfahrensablauf und erste Erfahrungen dargestellt sowie ein Überblick über das Untersuchungsprogramm gegeben.
Address (down) Paques Exton, US; Kennecott Utah Copper, Bingham Canyon, US; Paques Bio Systems, Balk, NL
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Biological sulfate removal and metal recovery from mine waters; 17880, BERG , 17.02.99; Words: 318; U9902 0058 586; 4 Seiten, 4 Bilder, 3 Tabellen, 4 Quellen 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik* 3UX *Umweltbelastung, technik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no
Call Number CBU @ c.wolke @ 17598 Serial 222
Permanent link to this record
 

 
Author Srivastave, A.; Chhonkar, P.K.
Title Amelioration of coal mine spoils through fly ash application as liming material Type Journal Article
Year 2000 Publication J. Ind. Res. Abbreviated Journal
Volume 59 Issue 4 Pages 309-313
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) mitigation fly ash feasibility study acid mine drainage lime
Abstract The feasibility of fly ash as compared to lime to ameliorate the low pH of acidic coal mine spoils under controlled pot culture conditions are reported using Sudan grass (Sorghum studanens) and Oats (Avena sativa) as indicator crops. It is observed that at all levels of applications, fly ash and lime significantly increase the pH of mine spoils, available phosphorus, exchangeable potassium, available sulphur and also uptake of phosphorus, potassium, sulphur and oven-dried biomass of both these test crops. The fly ash significantly decreases the bulk density of coal mine spoils, but, there is no effect on bulk density due to lime application. However, when the spoils are amended with either fly ash or lime, the root growth occurs throughout the material. Fly ash and lime do not cause elemental toxicities to the plants as evidenced from the dry matter production by the test crops. The results indicate that fly ash to be a potential alternative to lime for treating acidic coal mine spoils.
Address (down) P.K. Chhonkar, Div. of Soil Sci. and Agr. Chem., Indian Agricultural Research Inst., New Delhi 110 012, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4456 ISBN Medium
Area Expedition Conference
Notes Amelioration of coal mine spoils through fly ash application as liming material; 2364216; India 18; Geobase Approved no
Call Number CBU @ c.wolke @ 17535 Serial 234
Permanent link to this record
 

 
Author Eger, P.; Melchert, G.; Wagner, J.
Title Using passive treatment systems for mine closure – A good approach or a risky alternative? Type Journal Article
Year 2000 Publication Min. Eng. Abbreviated Journal
Volume 52 Issue 9 Pages 78-83
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) acid mine drainage decommissioning mine waste open pit mine pH remediation
Abstract In 1991, LTV Steel Mining decided to close an open-pit taconite mine in northeastern Minnesota using a passive-treatment approach consisting of limiting infiltration into the stockpiles and wetland treatment to remove metals. More than 50 Mt (55 million st) of sulfide-containing waste had been stockpiled adjacent to the mine during its 30 years of operation. Drainage from the stockpiles contained elevated levels of copper, nickel, cobalt and zinc. Nickel is the major trace metal in the drainages. Before the closure, the annual median concentrations ranged from 1.5 to 50 mg/L. Copper, cobalt and zinc are also present but they are generally less than 5% of the nickel values. Median pH levels range from 5 to 7.5, but most of the stockpile drainages have pH levels greater than 6.5. Based on the chemical composition of each stockpile, a cover material was selected. The higher the potential that a stockpile had to produce acid drainage, the lower the permeability of the capping material required. Covers ranged from overburden soil removed at the mine to a flexible plastic liner. Predictions of the reduction in infiltration ranged from 40% for the native soil to more than 90% for the plastic liner. Five constructed wetlands have been installed since 1992. They have removed 60% to 90% of the nickel in the drainages. Total capital costs for all the infiltration reduction and wetlands exceeded $6.5 million, but maintenance costs are less than 1% of those for an active treatment plant. Because mine-drainage problems can continue for more than 100 years, the lower annual operating costs should pay for the construction of the wetland-treatment systems within seven years.
Address (down) P. Eger, Minnesota Dept. of Natural Rsrces., St. Paul, MN, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Using passive treatment systems for mine closure – A good approach or a risky alternative?; 2285715; United-States 19; Geobase Approved no
Call Number CBU @ c.wolke @ 17539 Serial 392
Permanent link to this record