|   | 
Details
   web
Records
Author LaPointe, F.; Fytas, K.; McConchie, D.
Title Using permeable reactive barriers for the treatment of acid rock drainage Type Journal Article
Year 2005 Publication International journal of surface mining, reclamation and environment Abbreviated Journal
Volume 19 Issue 1 Pages 57-65
Keywords Pollution and waste management non radioactive Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 2) geomechanics abstracts: excavations (77 10 10) waste management remediation mining industry pollution control acid mine drainage reactive barrier aluminium industry effluents industrial waste mineral processing industry oxidation waste handling permeable reactive barriers acid rock drainage treatment acid mine drainage environmental problem Canadian mineral industry oxidation sulphide minerals mine waste mine tailings heavy metals acid remediation technology metallurgical residues aluminium extraction industry acid mine effluents Manufacturing and Production acid mine drainage Bauxsol Canada disposal barriers effluents experimental studies heavy metals instruments oxidation permeable reactive barriers pollutants pollution pyrite pyrrhotite remediation sulfides tailings waste disposal waste management
Abstract Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-5265 ISBN Medium
Area Expedition Conference
Notes Using permeable reactive barriers for the treatment of acid rock drainage; 8467608; Journal Paper; SilverPlatter; Ovid Technologies Approved no
Call Number CBU @ c.wolke @ 16786 Serial 12
Permanent link to this record
 

 
Author Conca, J.L.; Wright, J.
Title An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd Type Journal Article
Year 2006 Publication Appl. Geochem. Abbreviated Journal
Volume 21 Issue 12 Pages 2188-2200
Keywords Pollution and waste management non radioactive Groundwater quality apatite groundwater remediation zinc lead cadmium acid mine drainage copper sulfate nitrate permeability water treatment precipitation chemistry
Abstract Phosphate-induced metal stabilization involving the reactive medium Apatite II(TM) [Ca10-xNax(PO4)6-x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d'Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L-1), has reduced Zn to near background in this region (about 100 μg L-1), and has reduced SO4 by between 100 and 200 mg L-1 and NO3 to below detection (50 μg L-1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Dec.; An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd; Science Direct Approved no
Call Number CBU @ c.wolke @ 17248 Serial 44
Permanent link to this record
 

 
Author Johnson, D.B.; Hallberg, K.B.
Title Acid mine drainage remediation options: a review Type Journal Article
Year 2005 Publication Science of the Total Environment Abbreviated Journal
Volume 338 Issue 1-2 Pages 3-14
Keywords Wetlands and estuaries Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 8) geological abstracts: environmental geology (72 14 2) biological method pollutant removal water treatment wastewater bioremediation constructed wetland acid mine drainage Cornwall England England United Kingdom Western Europe Europe Eurasia Eastern Hemisphere World Acid mine drainage Bioreactors Bioremediation Sulfidogenesis Wetlands Wheal Jane
Abstract Acid mine drainage (AMD) causes environmental pollution that affects many countries having historic or current mining industries. Preventing the formation or the migration of AMD from its source is generally considered to be the preferable option, although this is not feasible in many locations, and in such cases, it is necessary to collect, treat, and discharge mine water. There are various options available for remediating AMD, which may be divided into those that use either chemical or biological mechanisms to neutralise AMD and remove metals from solution. Both abiotic and biological systems include those that are classed as “active” (i.e., require continuous inputs of resources to sustain the process) or “passive” (i.e., require relatively little resource input once in operation). This review describes the current abiotic and bioremediative strategies that are currently used to mitigate AMD and compares the strengths and weaknesses of each. New and emerging technologies are also described. In addition, the factors that currently influence the selection of a remediation system, and how these criteria may change in the future, are discussed.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Feb. 01; Acid mine drainage remediation options: a review; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10052.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 17464 Serial 47
Permanent link to this record
 

 
Author Hulshof, A.H.M.; Blowes, D.W.; Douglas Gould, W.
Title Evaluation of in situ layers for treatment of acid mine drainage: A field comparison Type Journal Article
Year 2006 Publication Water Res Abbreviated Journal
Volume 40 Issue 9 Pages 1816-1826
Keywords mine water Pollution and waste management non radioactive Groundwater problems and environmental effects acid mine drainage organic carbon oxidation microbial activity drainage groundwater pollution Bacteria microorganisms Contamination Groundwater Barriers Drainage Treatment
Abstract Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1 a-1, (5.2 mmol L-1 a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased δ13CDIC values from -3‰ to as low as -12‰ indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1 a-1 (52 mmol L-1 a-1), Fe concentrations decreased by 80–99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased δ13CDIC values, to as low as -22‰, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Medium
Area Expedition Conference
Notes May; Evaluation of in situ layers for treatment of acid mine drainage: A field comparison; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10040.pdf; Science Direct Approved no
Call Number CBU @ c.wolke @ 10040 Serial 49
Permanent link to this record
 

 
Author Smyth, D.; Blowes, D.; Ptacek, C.; Bain, J.
Title Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater Type Journal Article
Year 2004 Publication Geotechnical News Abbreviated Journal
Volume 22 Issue 1 Pages 39-44
Keywords acid mine drainage; acid rock drainage; aquifers; Canada; Cochrane District Ontario; concentration; disposal barriers; Eastern Canada; ground water; Kidd Creek; mine drainage; mines; Ontario; oxidation; permeability; permeable reactive barrier; pollutants; pollution; remediation; sulfates; sulfides; tailings; testing; Timmins Ontario; waste disposal; waste management; waste rock; waste water; water treatment 22, Environmental geology
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0823-650x ISBN Medium
Area Expedition Conference
Notes Application of permeable reactive barriers for treating mine drainage and dissolved metals in groundwater; 2006-058196; References: 20; sects. Canada (CAN); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5457 Serial 66
Permanent link to this record