|   | 
Details
   web
Records
Author Aube, B.C.
Title Molybdenum treatment at Brenda Mines Type Journal Article
Year 2000 Publication ICARD 2000, Vols I and II, Proceedings Abbreviated Journal
Volume Issue Pages 1113-1119
Keywords mine water treatment
Abstract (up) Brenda Mines, located 22 km Northwest of Peachland in British Columbia, Canada was an open pit copper-molybdenum mine which closed in 1990 after 20 years of operation. The primary concern in Brenda's tailings and waste rock drainage is molybdenum at a concentration of approximately 3 mg/L.. The mine drainage is alkaline and contains little or none of the typically problematic heavy metals. Given that the waters downstream are used for municipal water supply and some irrigation, a discharge limit of 0.25 mg/L molybdenum was imposed with specific water quality guidelines in the receiving creek. A. review of all existing and potential molybdenum removal methods was undertaken prior to mine closure. The chosen process is a two-step iron co-precipitation with clarification and sand filtration at a slightly acidic pH. A 4,000 usgpm (912 m(3)/h) treatment plant was constructed and commissioned in 1998, at a cost of $10.5M. The successful removal of molybdenum from the drainage water is explained with details on some design innovations and operational challenges encountered during plant start-up. Investigated sludge disposal options are discussed although the long term disposal scenario has not yet been finalised.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Molybdenum treatment at Brenda Mines; Isip:000169875500109; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17104 Serial 167
Permanent link to this record
 

 
Author Chen, M.; Li, L.; Grace, J.; Tazaki, K.; Shiraki, K.; Asada, R.; Watanabe, H.
Title Remediation of acid rock drainage by regenerable natural clinoptilolite Type Journal Article
Year 2007 Publication Water, Air, Soil Pollut. Abbreviated Journal
Volume 180 Issue 1-4 Pages 11-27
Keywords mine water treatment
Abstract (up) Clinoptilolite is investigated as a possible regenerable sorbent for acid rock drainage based on its adsorption capacity for Zn, adsorption kinetics, effect of pH, and regeneration performance. Adsorption of Zn ions depends on the initial concentration and pH. Adsorption/Desorption of Zn reached 75% of capacity after 1-2 h. Desorption depended on pH, with an optimum range of 2.5 to 4.0. The rank of desorption effectiveness was EDTAEDTA > NaCl > NaNO3 > NaOAc > NaHCO3 > Na2CO3 > NaOH > CeCa(OH)(2). For cyclic absorption/desorption, adsorption remained satisfactory for six to nine regenerations with EDTA and NaCl, respectively. The crystallinity and morphology of clinoptilolite remained intact following 10 regeneration cycles. Clinoptilolite appears to be promising for ARD leachate treatment, with significant potential advantages relative to current treatment systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-6979 ISBN Medium
Area Expedition Conference
Notes Mar; Remediation of acid rock drainage by regenerable natural clinoptilolite; Wos:000244030000003; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 7319 Serial 17
Permanent link to this record
 

 
Author Goulet, R.R.
Title The evaluation of metal retention by a constructed wetland using the pulmonate gastropod Helisoma trivolvis (Say) Type Journal Article
Year 2001 Publication Archives of Environmental Contamination and Toxicology Abbreviated Journal
Volume 40 Issue 3 Pages 303-310
Keywords mine water treatment
Abstract (up) Constructed wetlands are built because they can act as sinks fur many pollutants, thereby protecting the water quality of downstream ecosystems. The treatment performance is generally assessed using mass balance calculations. Along with the mass balance approach, we compared the metal content of populations of a common pond snail (Helisoma trivolvis Say) collected upstream and downstream of a 3-year-old constructed wetland. Snails were collected in early May, June, and August 1998. At the same time, water samples for particulate and dissolved metals were taken every 3 days for the duration of the experiment. Overall, the wetland retained most dissolved metals, including Fe, Mn, Cu, Zn, Ni, and Pb, but released dissolved As. However, the wetland released particulate Fe and Mn. With the exception of Zn, the metal concentrations of the downstream snails were on average higher than those measured in the upstream population. The higher metal content of downstream snails was likely related to the significant export of particulate metals by the wetland, despite the overall retention of dissolved metals. This study points to the need for biological as well as chemical monitoring to determine the treatment efficiency and toxicological risk associated with constructed wetlands.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes The evaluation of metal retention by a constructed wetland using the pulmonate gastropod Helisoma trivolvis (Say); Wos:000167524900002; Times Cited: 2; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17049 Serial 125
Permanent link to this record
 

 
Author Harrington, J.M.
Title In situ treatment of metals in mine workings and materials Type Journal Article
Year 2002 Publication Tailings and Mine Waste '02 Abbreviated Journal
Volume Issue Pages 251-261
Keywords mine water treatment
Abstract (up) Contact of oxygen contained in air and water with mining materials can increase the solubility of metals. In heaps leached by cyanide, metals can also be made soluble through complexation with cyanide. During closure, water in heaps, and water collected in mine workings and pit lakes may require treatment to remove these metals. In situ microbiological treatment to create reductive conditions and to precipitate metals as sulfides or elemental metal has been applied at several sites with good success. Treatment by adding organic carbon to stimulate in situ microbial reduction has been successful in removing arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, silver, tin, uranium, and zinc to a solid phase. Closure practices can affect the success of in situ treatment at mining sites, and affect the stability of treated materials. This paper defines factors that determine the cost and permanence of in situ treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes In situ treatment of metals in mine workings and materials; Isip:000175560600034; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17037 Serial 161
Permanent link to this record
 

 
Author Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B.
Title Mine-water chemistry: The good, the bad and the ugly Type Journal Article
Year 1997 Publication Environ. Geol. Abbreviated Journal
Volume 32 Issue 3 Pages 157-174
Keywords mine water treatment mine-water chemistry acid mine drainage mine-water pollution mine-water treatment county-durham drainage movements Pollution and waste management non radioactive Groundwater problems and environmental effects mine drainage contamination hydrogeochemistry mine water drainage acid mine drainage
Abstract (up) Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind's intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers' yeast) require further research.
Address D. Banks, Norges Geologiske Undersokelse, Postboks 3006 – Lade, N-7002 Trondheim, Norway
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0943-0105 ISBN Medium
Area Expedition Conference
Notes Oct.; Mine-water chemistry: The good, the bad and the ugly; 0337169; Germany 78; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10620.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 10620 Serial 18
Permanent link to this record