|   | 
Details
   web
Records
Author Earley, D., III; Schmidt, R.D.; Kim, K.
Title Is sustainable mining an oxymoron? Type Journal Article
Year 1997 Publication Abbreviated Journal
Volume Issue Pages
Keywords acids data processing development ground water leaching mineral resources mining mining geology models monitoring pollution production solutions 26A Economic geology, general, deposits 22 Environmental geology
Abstract (up) Sustainable mining is generally considered to be an oxymoron because mineral deposits are viewed as nonrenewable resources that are fixed in the crust. However, minerals are conserved and recycled by plate tectonics which continually creates and destroys ore deposits. Though it is true that rock cycles have much longer periods than biomass cycles, the crust is essentially an infinite reservoir so long as we continue to invest in mineral exploration and processing technology. Implicit in the definition of sustainable development is the recognition that human development of resources in one reservoir may subsequently degrade resources supplied by another. The depreciation of overlapping and adjacent resources is often externalized in the cost to benefit accounting and cannot be sustained if the integrated cost/benefit ratio is greater than 1. The greatest obstacle to sustainability in mining is the expanding scale of excavation required to develop leaner ores because this activity degrades connected resources. In the case of open pit, sulfide ore mining the disturbed land may produce acid rock drainage (ARD). Because ARD will self-generate over the course of tens to hundreds of years the cost of controlling this pollution and rehabilitating mined lands is large and often spread over many generations. Secondary production of minerals from partially excavated deposits where there are preexisting environmental impacts and mine infrastructure help to reduce the risk of depreciating pristine resources, provided that new mining operations “do no (additional) harm” (Margoles, 1996). In turn, a percentage of the profits derived from secondary mineral production can be used for rehabilitation of the previously mined lands. These lands contain significant, albeit low grade, metal concentrations. These concepts are being developed and tested at the Mineral Park Sustainable Mining Research Facility where an in situ copper sulfide mining field experiment was conducted. Monitoring data and computer modeling indicate that ARD is not generated after closure. This is because the ore is not disturbed and is left saturated, whereas unsaturated conditions generate acidic drainage. The short term risk of groundwater contamination is mitigated by utilizing an exempt mine pit to capture any leach solutions that are not intercepted by the wellfield. Using green accounting techniques and transfer models it can be communicated that this mining scenario is an approach to sustainability.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, 1997 annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 1998-051450; Geological Society of America, 1997 annual meeting, Salt Lake City, UT, United States, Oct. 20-23, 1997; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16638 Serial 396
Permanent link to this record
 

 
Author Benner, S.G.; Blowes, D.W.; Ptacek, C.J.
Title A full-scale porous reactive wall for prevention of acid mine drainage Type Journal Article
Year 1997 Publication Ground Water Monitoring and Remediation Abbreviated Journal
Volume 17 Issue 4 Pages 99-107
Keywords acid mine drainage alkalinity bacteria Canada case studies concentration dissolved materials drainage Eastern Canada ground water mines observation wells Ontario permeability pH pollution porous materials recharge reduction remediation site exploration Sudbury District Ontario sulfate ion surface water waste disposal water pollution Groundwater quality Groundwater problems and environmental effects Pollution and waste management non radioactive geographical abstracts: physical geography hydrology (71 6 11) geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) groundwater protection permeable barrier acid mine drainage aquifer groundwater acid min drainage contamination permeable barrier groundwater protection permeable barrier acid mine drainage aquifer Canada, Ontario, Sudbury, Nickel Rim
Abstract (up) The generation and release of acidic drainage containing high concentrations of dissolved metals from decommissioned mine wastes is an environmental problem of international scale. A potential solution to many acid drainage problem is the installation of permeable reactive walls into aquifers affected by drainage water derived from mine waste materials. A permeable reactive wall installed into an aquifer impacted by low-quality mine drainage waters was installed in August 1995 at the Nickel Rim mine site near Sudbury, Ontario. The reactive mixture, containing organic matter, was designed to promote bacterially mediated sulfate reduction and subsequent metal sulfide precipitation. The reactive wall is installed to an average depth of 12 feet (3.6 m) and is 49 feet (15 m) long perpendicular to ground water flow. The wall thickness (flow path length) is 13 feet (4 m). Initial results, collected nine months after installation, indicate that sulfate reduction and metal sulfide precipitation is occurring. Comparing water entering the wall to treated water existing the wall, sulfate concentrations decrease from 2400 to 4600 mg/L to 200 to 3600 mg/L; Fe concentration decrease from 250 to 1300 mg/L to 1.0 to 40 mg/L, pH increases from 5.8 to 7.0; and alkalinity (as CaCO<inf>3</inf>) increases from 0 to 50 mg/L to 600 to 2000 mg/L. The reactive wall has effectively removed the capacity of the ground water to generate acidity on discharge to the surface. Calculations based on comparison to previously run laboratory column experiments indicate that the reactive wall has potential to remain effective for at least 15 years.
Address Dr. S.G. Benner, Earth Sciences Department, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1069-3629 ISBN Medium
Area Expedition Conference
Notes Review; A full-scale porous reactive wall for prevention of acid mine drainage; 0337197; United-States 46; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10621.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17555 Serial 67
Permanent link to this record
 

 
Author Davies, G.J.; Holmes, M.; Wireman, M.; King, K.; Gertson, J.N.; Stefanic, J.M.
Title Water tracing at scales of hours to decades as an aid to estimating hydraulic characteristics of the Leadville Mine drainage tunnel Type Journal Article
Year 2001 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage Arkansas River Colorado drainage dye tracers field studies fluorescence ground water Lake County Colorado Leadville Mine Leadville mining district pH quantitative analysis recharge surveys tunnels United States water treatment 30 Engineering geology 21 Hydrogeology
Abstract (up) The Leadville Mine Drainage Tunnel (LMDT) is a 3.3 kilometer structure that was constructed in the complicated geology of the Leadville mine district in the 1940's. Discharge from the LMDT is impacted by heavy metals and is treated at a plant built in 1992 operated by the United States Bureau of Reclamation. On the surface waste rock and other remnants of the mining operations litter the landscape and this material is exposed to precipitation. As a result of contact with this material, surface water often has pH of less than 3 and its containment and disposal is necessary before it impacts surface drainage and the nearby Arkansas River. Using a borehole drilled into the mine workings the U.S. EPA has devised a plan in which the impacted water is contained on the surface which then can be discharged into the mine workings to discharge from the LMDT and be treated. The percentage of water discharging from the mining district along the drainage tunnel is unknown, and since there is no access, information about the condition of the tunnel with regards to blockages is also relatively obscure. Application of quantitative water tracing using fluorescent dyes was used to model the flow parameters at the scale of hours in the tunnel and evaluate the likelihood of blockages. Because the tunnel has intersected several lithologies and faults, other locations such as discharging shafts, adits and surface streams that could be hydraulically connected to the LMDT were also monitored. An initial tracer experiment was done using an instantaneous injection, which was followed by additional injections of water. Another tracer injection was done when there was a continuous flow of impacted water into the workings. Analysis of the tracer concentration responses at water-filled shafts and at the portal were used to model the flow along the tunnel and estimate several hydraulic parameters. Waters in these settings are mixtures of components with different residence times, so, qualitative tritium data were used to evaluate residence times of decades. The combined injected tracer and tritium data as well as other geochemical data were used to infer the nature of flow and recharge into the tunnel.
Address
Corporate Author Thesis
Publisher Abstracts with Programs - Geological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Geological Society of America, 2001 annual meeting Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2004-013418; Geological Society of America, 2001 annual meeting, Boston, MA, United States, Nov. 1-10, 2001; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16511 Serial 408
Permanent link to this record
 

 
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L.
Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
Year 2001 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal
Volume Issue Pages 579-584
Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology
Abstract (up) The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no
Call Number CBU @ c.wolke @ 16526 Serial 290
Permanent link to this record