toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kalin, M.; Cairns, J.; McCready, R. url  openurl
  Title Ecological engineering methods for acid mine drainage treatment of coal wastes Type Journal Article
  Year 1991 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 5 Issue 2-3 Pages 265-275  
  Keywords  
  Abstract (down) The treatment of acid mine drainage (AMD) through the utilization of alkali generating microbes has potential as an alternate approach to conventional lime treatment. Organic matter, a source of fixed carbon for the alkali generating microbial ecosystem, has been tested in 6 different types of AMD. The AMD characteristics range in acidities from 2 mg/l to 900 mg/l (CaCO3 equivalent), while sulphate concentrations range from 75 to 7300 mg/l. Alkali generating populations identified include iron reducers, sulphate reducers and ammonifiers. In coal AMD amended with organic matter, the microbial alkali generation is dominated by ammonifiers. Concentrations of Al, Fe and Zn in the AMD water decreased with concurrent increases in pH (3.2 to 6.5) in localized areas in the test cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Ecological engineering methods for acid mine drainage treatment of coal wastes; Science Direct Approved no  
  Call Number CBU @ c.wolke @ 17276 Serial 39  
Permanent link to this record
 

 
Author Orava, D.A.; Swider, R.C. openurl 
  Title Inhibiting acid mine drainage throughout the mine life cycle Type Journal Article
  Year 1996 Publication CIM Bull. Abbreviated Journal  
  Volume 89 Issue 999 Pages 52-56  
  Keywords Umweltschutz Bergbau Erzaufbereitung Exploration Säure Industrieabwasser Oxidation Sulfid Kanada Wasserhaltung Aufbereitungsberge Waschberge  
  Abstract (down) The technical knowledge and practical experience accumulated by industry and others in abating acid mine drainage (AMD) is being proactively applied at every phase of the mine life cycle. This paper traces the mine life cycle from exploration to post closure monitoring and maintenance, and reviews AMD abatement measures that have become an integral component of exploration and mining activities. Attention is increasingly being given to evaluating AMD potential as part of exploration work, and studies related to project feasibility and design. Mining, mineral processing and waste management options are selected taking into consideration their suitability to inhibit AMD. These inhibition measures are typically committed to in closure plans submitted at the permitting stage. Mines are operated and decommissioned, often progressively, as planned and in accordance with environmental protection policies. Es wird über das Problem der Säurebildung aus sulfidischen Aufbereitungsbergen und taubem Gestein im Verlauf des Existenzzyklus eines Bergwerkes berichtet. In Kanada werden seit etwa 10 Jahren intensive Forschungen für Vorhersage, Kontrolle und Eindämmung von Saürebildungen im Bergbau betrieben. Schwerpunkt ist dabei die sulfidische Oxidation (2FeS2 + 7O2 = 2FeSO4 + 2H2SO4) unter Einwirkung verschiedener physikalischer, geochemischer und biologischer Faktoren. Diese Reaktion führt zu einem Komplex weiterer chemischer Reaktionen unter Bildung von zusätzlicher Säure und Lösung von Metallen. Daraus ergeben sich zwei Hauptmöglichkeiten diesen Prozeß zu steuern: 1. die Sulfidoxidation verhindern, 2. den Oxidationsprozeß verlangsamen. Mit dem heutigen Wissensstand ist es möglich, das Säurebildungspotential von Aufbereitungsbergen zu bestimmen, den Prozeß der Sulfidoxidation von Mineralen unter bestimmten physikalischen, geochemischen und biologischen Bedingungen zu modellieren und die Säurebildung von Aufbereitungsbergen und sulfidischen Gesteinen einzudämmen. Im einzelnen werden Maßnahmen zur Bewertung des Säurebildungspotentials und zur Kontrolle und Reduzierung dieses Prozesses während der Existenzstadien Exploration, Durchführbarkeitsstudie und Genehmigung, Gewinnung und Stillegung eines Bergwerkes erläutert. An Beispielen wird gezeigt, daß bei rechtzeitgem Erkennen des Säurebildungspotentials in der Phase der Exploration Verfahren und Maßnahmen bezüglich Aufbereitung, Umgang mit Aufbereitungsbergen ausgewählt werden können.  
  Address SENES Consultants, Richmond Hill, CA; Swider Consulting Engineers, Toronto, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0317-0926 ISBN Medium  
  Area Expedition Conference  
  Notes Inhibiting acid mine drainage throughout the mine life cycle; 11083, BERG , 31.07.96; Words: 383; U9608 0110 586; 5 Seiten, 3 Bilder, 3 Tabellen, 16 Quellen 3UXX *Belastung von Wasser, Wasserreinhaltung, Abwasser* 3ATB *Technikfolgenabschätzung* 3MZ *Bergbau, Tunnelbau, Erdöl /Erdgasförderung, Bohrtechnik* 3AXF *Forschungsentwicklung, Forschungspolitik*; BERG, Copyright FIZ Technik e.V.; EN Englisch Approved no  
  Call Number CBU @ c.wolke @ 17610 Serial 278  
Permanent link to this record
 

 
Author Nairn, R.W.; Griffin, B.C.; Strong, J.D.; Hatley, E.L. openurl 
  Title Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma Type Book Chapter
  Year 2001 Publication Proceedings of the Annual National Meeting – American Society for Surface Mining and Reclamation, vol.18 Abbreviated Journal  
  Volume Issue Pages 579-584  
  Keywords abandoned mines acid mine drainage collapse structures constructed wetlands environmental analysis geologic hazards ground water human ecology Kansas land subsidence lead metals mines Missouri Oklahoma pollution reclamation remediation springs Superfund sites surface water Tar Creek Superfund Site United States water resources wetlands zinc 22, Environmental geology  
  Abstract (down) The Tar Creek Superfund Site is a portion of the abandoned lead and zinc mining area known as the Tri-State Mining District (OK, KS and MO) and includes over 100 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Underground mining from the 1890s through the 1960s degraded over 1000 surface hectares, and left nearly 50 km of tunnels, 165 million tons of processed mine waste materials (chat), 300 hectares of tailings impoundments and over 2600 open shafts and boreholes. Approximately 94 million cubic meters of contaminated water currently exist in underground voids. In 1979, metal-rich waters began to discharge into surface waters from natural springs, bore holes and mine shafts. Six communities are located within the boundaries of the Superfund site. Approximately 70% of the site is Native American owned. Subsidence and surface collapse hazards are of significant concern. The Tar Creek site was listed on the National Priorities List (NPL) in 1983 and currently receives a Hazard Ranking System score of 58.15, making Tar Creek the nation's number one NPL site. A 1993 Indian Health Service study demonstrated that 35% of children had blood lead levels above thresholds dangerous to human health. Recent remediation efforts have focused on excavation and replacement of contaminated residential areas. In January 2000, Governor Frank Keating's Tar Creek Task Force was created to take a “vital leadership role in identifying solutions and resources available to address” the myriad environmental problems. The principle final recommendation was the creation of a massive wetland and wildlife refuge to ecologically address health, safety, environmental, and aesthetic concerns. Additional interim measures included continuing the Task Force and subcommittees; study of mine drainage discharge and chat quality; construction of pilot treatment wetlands; mine shaft plugging; investigations of bioaccumulation issues; establishment of an authority to market and export chat, a local steering committee, and a GIS committee; and development of effective federal, state, tribal, and local partnerships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Vincent, R.; Burger, J.A.; Marino, G.G.; Olyphant, G.A.; Wessman, S.C.; Darmody, R.G.; Richmond, T.C.; Bengson, S.A.; Nawrot, J.R.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Remediation challenges and opportunities at the Tar Creek Superfund Site, Oklahoma; GeoRef; English; 2002-036287; 18th annual national meeting of the American Society for Surface Mining and Reclamation; Land reclamation, a different approach, Albuquerque, NM, United States, June 3-7, 2001 References: 20; illus. incl. 1 table Approved no  
  Call Number CBU @ c.wolke @ 16526 Serial 290  
Permanent link to this record
 

 
Author Ketellapper, V.L.; Williams, L.O.; Bell, R.S.; Cramer, M.H. openurl 
  Title The control of acid mine drainage at the Summitville Mine Superfund Site Type Book Chapter
  Year 1996 Publication Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), vol.1996 Abbreviated Journal  
  Volume Issue Pages 303-311  
  Keywords acid mine drainage Colorado Del Norte Colorado gold ores metal ores mines mining mining geology open-pit mining pollutants pollution remediation Rio Grande County Colorado Summitville Mine Superfund sites surface mining United States water quality 22, Environmental geology  
  Abstract (down) The Summitville Mine Superfund Site is located about 25 miles south of Del Norte, Colorado, in Rio Grande County. Occurring at an average elevation of 11,500 feet in the San Juan Mountain Range, the mine site is located two miles east of the Continental Divide. Mining at Summitville has occurred since 1870. The mine was most recently operated by Summitville Consolidated Mining Company, Inc. (SCMCI) as an open pit gold mine with extraction by means of a cyanide leaching process. In December of 1992, SCMCI declared bankruptcy and vacated the mine site. At that time, the US Environmental Protection Agency (EPA) took over operations of the water treatment facilities to prevent a catastrophic release of cyanide and metal-laden water from the mine site. Due to high operational costs of water treatment (approximately $50,000 per day), EPA established a goal to minimize active water treatment by reducing or eliminating acid mine drainage (AMD). All of the sources of AMD generation on the mine site were evaluated and prioritized. Of the twelve areas identified as sources of AMD, the Cropsy Waste Pile, the Summitville Dam Impoundment, the Beaver Mud Dump, the Reynolds and Chandler adits, and the Mine Pits were consider to be the most significant contributors to the generation of metal-laden acidic (low pH) water. A two part plan was developed to control AMD from the most significant sources. The first part was initiated immediately to control AMD being released from the Site. This part focused on improving the efficiency of the water treatment facilities and controlling the AMD discharges from the mine drainage adits. The discharges from the adits was accomplished by plugging the Reynolds and Chandler adits. The second part of the plan was aimed at reducing the AMD generated in groundwater and surface water runoff from the mine wastes. A lined and capped repository located in the mine pits for acid generating mining waste and water treatment plant sludge was found to be the most feasible alternative. Beginning in 1993, mining wastes which were the most significant sources of AMD were being excavated and placed in the Mine Pits. In November 1995, all of the waste from these sources had been excavated and placed in the the Mine Pits. This paper discusses EPA's overall approach to stabilize on-site sources sufficiently such that aquatic, agricultural, and drinking water uses in the Alamosa watershed are restored and/or maintained with minimal water treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes The control of acid mine drainage at the Summitville Mine Superfund Site; GeoRef; English; 2002-027195; Symposium on the Application of geophysics to engineering and environmental problems, Keystone, CO, United States, April 28-May 2, 1996 References: 11; illus. incl. geol. sketch map Approved no  
  Call Number CBU @ c.wolke @ 16654 Serial 334  
Permanent link to this record
 

 
Author Juby, G.J.G. url  openurl
  Title Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process Type Journal Article
  Year 1996 Publication Water Sa Abbreviated Journal  
  Volume 22 Issue 2 Pages 161-172  
  Keywords mine water treatment  
  Abstract (down) The South African mining industry discharges relatively small quantities of mine service water to the environment, but these effluents contribute substantially to the salt load of the receiving waters. The poor quality of service water also has significant cost implications on the mining operations. Of the two main types of mine service water encountered in the gold mining industry, the so-called calcium sulphate scaling types is found in the majority of cases. Preliminary testwork on this type of water using membrane desalination processes revealed that only the seeded reverse osmosis type of process showed promise. To overcome certain process problems and high operating costs with this system, a novel membrane desalination technique incorporating seeded technology, called the SPARRO (slurry precipitation and recycle reverse osmosis) process, was developed. The novel features of the new process included; a lower linear slurry velocity in the membrane tubes, a lower seed slurry concentration, a dual pumping arrangement to a tapered membrane stack, a smaller reactor and a modified seed crystal and brine blow-down system. Evaluation of the SPARRO process and its novel features, over a five-year period, confirmed its technical viability for desalinating calcium sulphate-scaling mine water. The electrical power consumption of the process was approximately half that of previous designs, significantly improving its efficiency. Membrane performance was evaluated and was generally unsatisfactory with both fouling and hydrolysis dominating at times, although operating conditions for the membranes were not always ideal. The precise cause(s) for the membrane degradation was not established, but a mechanism for fouling (based upon the presence of turbidity in the mine water) and a hypothesis fora possible cause of hydrolysis (alluding to the presence of radionuclides in the mine water) were proposed. Product water from the SPARRO process has an estimated gross unit cost (including capital costs) of 383 c/m(3) (1994).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process; Wos:A1996uh88100009; Times Cited: 5; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 17168 Serial 86  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: