|   | 
Details
   web
Records
Author Banks, S.B.; Banks, D.
Title Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK Type Book Chapter
Year 2001 Publication Geoenvironmental engineering Engineering Geology Abbreviated Journal
Volume Issue Pages 31-37
Keywords abandoned mines coal mines cost discharge drainage England environmental effects Europe feasibility studies Great Britain mine drainage mines mitigation pollution remediation Scotland United Kingdom Western Europe 22, Environmental geology
Abstract (up) The UK has a legacy of pollution caused by discharges from abandoned coal mines, with the potential for further pollution by new discharges as groundwaters continue to rebound to their natural levels. In 1995, the Coal Authority initiated a scoping study of 30 gravity discharges from abandoned coal mines in England and Scotland. Mining information, geological information and water quality data were collated and interpreted in order to allow a preliminary assessment of the source and nature of each of the discharges. An assessment of the potential for remediation was made on the basis of the feasibility and relative costs of alternative remediation measures. Environmental impacts of the discharges and of the proposed remediation schemes were also assessed. The results, together with previous Coal Authority studies of discharges in Wales, were used by the Coal Authority, in collaboration with the former National Rivers Authority and the former Forth and Clyde River Purification Boards, to rank discharge sites in order of priority for remediation.
Address
Corporate Author Thesis
Publisher Place of Publication 60 Editor Yong, R.N.; Thomas, H.R.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Abandoned mines drainage; impact assessment and mitigation of discharges from coal mines in the UK; GeoRef; English; 2001-052748; British Geotechnical Society, second conference on Geoenvironmental engineering, London, United Kingdom, Sept. 1999 References: 12; illus. incl. 2 tables Approved no
Call Number CBU @ c.wolke @ 16515 Serial 31
Permanent link to this record
 

 
Author Ntengwe, F.W.
Title An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia Type Journal Article
Year 2005 Publication Phys. Chem. Earth Abbreviated Journal
Volume 30 Issue 11-16 Spec. Iss. Pages 726-734
Keywords mine water treatment Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) wastewater pollution control acid mine drainage Hyacinthus Zambia Southern Africa Sub Saharan Africa Africa Eastern Hemisphere World
Abstract (up) The wastewaters coming from mining operations usually have low pH (acidic) values and high levels of metal pollutants depending on the type of metals being extracted. If unchecked, the acidity and metals will have an impact on the surface water. The organisms and plants can adversely be affected and this renders both surface and underground water unsuitable for use by the communities. The installation of a treatment plant that can handle the wastewaters so that pH and levels of pollutants are reduced to acceptable levels provides a solution to the prevention of polluting surface and underground waters and damage to ecosystems both in water and surrounding soils. The samples were collected at five points and analyzed for acidity, total suspended solids, and metals. It was found that the pH fluctuated between pH 2 when neutralization was forgotten and pH 11 when neutralization took place. The levels of metals that could cause impacts to the water ecosystem were found to be high when the pH was low. High levels of metals interfere with multiplication of microorganisms, which help in the natural purification of water in stream and river bodies. The fish and hyacinth placed in water at the two extremes of pH 2 and pH 11 could not survive indicating that wastewaters from mining areas should be adequately treated and neutralized to pH range 6-9 if life in natural waters is to be sustained. < copyright > 2005 Elsevier Ltd. All rights reserved.
Address F.W. Ntengwe, Copperbelt University, School of Technology, P.O. Box 21692, Kitwe, Zambia fntengwe@cbu.ac.zm
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Review; An overview of industrial wastewater treatment and analysis as means of preventing pollution of surface and underground water bodies – The case of Nkana Mine in Zambia; 2790318; United-Kingdom 23; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/10301.pdf; Geobase Approved no
Call Number CBU @ c.wolke @ 17497 Serial 24
Permanent link to this record
 

 
Author Dunn, J.; Russell, C.; Morrissey, A.
Title Remediating historic mine sites in Colorado Type Journal Article
Year 1999 Publication Min. Eng. Abbreviated Journal
Volume 51 Issue 8 Pages 32-35
Keywords Reclamation and conservation Groundwater problems and environmental effects geological abstracts: environmental geology (72 14 1) geomechanics abstracts: excavations (77 10 10) abandoned mine acid mine drainage environmental effect remediation United States Colorado
Abstract (up) This article provides examples of reclamation and remediation in Colorado watersheds. The projects were undertaken by the US Environmental Protection Agency (EPA) Region 8, in cooperation with the Colorado Division of Minerals and Geology (CDMG), Colorado Department of Public Health and Environment (CDPHE), US Forest Service (USFS), the Bureau of Land Management (BLM), Bureau of Reclamation (BOR) and the US Geological Survey (USGS). These agencies collaborated on the environmental problems at abandoned mines. These samples involved the interaction of surface and ground waters with sulfide-bearing rocks, mine workings and surface mine spoils that produce acid solutions charged with heavy metals that are toxic to organisms. In these examples, acid mine drainage from historic mines in Colorado has been approached cooperatively with stakeholders. Each example emphasizes one aspect of the three-stage process. These stages include characterization and prioritization, hydrologic controls and the evaluation of long-term remediation activities.
Address J. Dunn, US Environmental Protection Agency, Region 8, 999 18(th) St., Suite 500, Denver, CO 80202-2466, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-5187 ISBN Medium
Area Expedition Conference
Notes Remediating historic mine sites in Colorado; 0434641; United-States; Geobase Approved no
Call Number CBU @ c.wolke @ 17547 Serial 398
Permanent link to this record
 

 
Author Wolkersdorfer, C.
Title Mine water tracing Type Journal Article
Year 2002 Publication Geological Society Special Publication Abbreviated Journal
Volume - Issue 198 Pages 47-60
Keywords Groundwater problems and environmental effects Pollution and waste management non radioactive geomechanics abstracts: excavations (77 10 10) geological abstracts: environmental geology (72 14 2) flooding seepage abandoned mine tracer groundwater flow
Abstract (up) This paper describes how tracer tests can be used in flooded underground mines to evaluate the hydrodynamic conditions or reliability of dams. Mine water tracer tests are conducted in order to evaluate the flow paths of seepage water, connections from the surface to the mine, and to support remediation plans for abandoned and flooded underground mines. There are only a few descriptions of successful tracer tests in the literature, and experience with mine water tracing is limited. Potential tracers are restricted due to the complicated chemical composition or low pH mine waters. A new injection and sampling method ('LydiA'-technique) overcomes some of the problems in mine water tracing. A successful tracer test from the Harz Mountains in Germany with Lycopodium clavatum, microspheres and sodium chloride is described, and the results of 29 mine water tracer tests indicate mean flow velocities of between 0.3 and 1.7 m min-1.
Address C. Wolkersdorfer, TU Bergakademie Freiberg, Lehrstuhl fur Hydrogeologie, Gustav-Zeuner-Strasse 12, Freiberg, Sachsen D-09599, Germany c.wolke@tu-freiberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-8719 ISBN Medium
Area Expedition Conference
Notes Mine water tracing; 2463597; United-Kingdom 71; Geobase Approved no
Call Number CBU @ c.wolke @ 17528 Serial 83
Permanent link to this record
 

 
Author Coulton, R.; Bullen, C.; Hallett, C.
Title The design and optimisation of active mine water treatment plants Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 273-280
Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage
Abstract (up) This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.
Address R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17513 Serial 59
Permanent link to this record