toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Simmons, J.A.; Andrew, T.; Arnold, A.; Bee, N.; Bennett, J.; Grundman, M.; Johnson, K.; Shepherd, R. openurl 
  Title Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams Type Journal Article
  Year 2006 Publication Mine Water Env. Abbreviated Journal  
  Volume 25 Issue 4 Pages 241-245  
  Keywords acid mine drainage aluminum calcium limestone sand sediment stream liming West Virginia  
  Abstract (up) In-stream limestone sand addition (ILSA) has been employed as the final treatment for acid mine drainage discharges at Swamp Run in central West Virginia for six years. To determine the small-scale longitudinal variation in stream water and sediment chemistry and stream biota, we sampled one to three locations upstream of the ILSA site and six locations downstream. Addition of limestone sand significantly increased calcium and aluminum concentrations in sediment and increased the pH, calcium, and total suspended solids of the stream water. Increases in alkalinity were not significant. The number of benthic macroinvertebrate taxa was significantly reduced but there was no effect on periphyton biomass. Dissolved aluminum concentration in stream water was reduced, apparently by precipitation into the stream sediment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1025-9112 ISBN Medium  
  Area Expedition Conference  
  Notes Small-Scale Chemical Changes Caused by In-stream Limestone Sand Additions to Streams; 1; FG 4 Abb., 2 Tab.; AMD ISI | Wolkersdorfer Approved no  
  Call Number CBU @ c.wolke @ 17420 Serial 248  
Permanent link to this record
 

 
Author Driussi, C. url  openurl
  Title Technological options for waste minimisation in the mining industry Type Journal Article
  Year 2006 Publication J. Cleaner Prod. Abbreviated Journal  
  Volume 14 Issue 8 Pages 682-688  
  Keywords mine water treatment  
  Abstract (up) Just as the application of technology in mining processes can cause pollution, it can also be harnessed to minimise, and sometimes eliminate, mine-related contaminants. Waste minimisation can be achieved through decreased waste production, waste collection, waste recycling, and the neutralisation of pollutants into detoxified forms. This article reviews examples of how technology can be used to minimise air, water, land and noise pollution in the mining industry. (c) 2005 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Technological options for waste minimisation in the mining industry; Wos:000237749600002; Times Cited: 1; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16924 Serial 110  
Permanent link to this record
 

 
Author Bamforth, S.M. url  openurl
  Title Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates Type Journal Article
  Year 2006 Publication Appl. Geochem. Abbreviated Journal  
  Volume 21 Issue 8 Pages 1274-1287  
  Keywords mine water treatment  
  Abstract (up) Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate may not be necessary for successful Mn precipitation. (c) 2006 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Manganese removal from mine waters – investigating the occurrence and importance of manganese carbonates; Wos:000240297600004; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16916 Serial 107  
Permanent link to this record
 

 
Author Edraki, M. url  openurl
  Title Post closure management of the Mt Leyshon Gold Mine – Water the integrator Type Journal Article
  Year 2006 Publication Water in Mining 2006, Proceedings Abbreviated Journal  
  Volume Issue Pages 233-242  
  Keywords mine water treatment  
  Abstract (up) Mining at the Mt Leyshon Gold Mine in semi-arid north Queensland stopped in 2002. Newmont Australia has recently initiated a thorough post-closure water management study of the site by revisiting the existing information and conducting new water-related investigations. The focus of this paper. which is the first publication on post-closure environmental management of the site. is an overview of the site water quality in view of the sources and spatial distribution of polluted mine water, and also the performance of cover systems in controlling water flux though mine wastes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Post closure management of the Mt Leyshon Gold Mine – Water the integrator; Isip:000243724400032; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 16925 Serial 150  
Permanent link to this record
 

 
Author Wolkersdorfer, C. url  openurl
  Title Tracer tests as a mean of remediation procedures in mines Type Journal Article
  Year 2006 Publication Uranium in the Environment: Mining Impact and Consequences Abbreviated Journal  
  Volume Issue Pages 817-822  
  Keywords mine water treatment  
  Abstract (up) Mining usually causes severe anthropogenic changes by which the ground- or surface water might be significantly polluted. One of the main problems in the mining industry are acid mine drainage, the drainage of heavy metals, and the prediction of mine water rebound after mine closure. Consequently, the knowledge about the hydraulic behaviour of the mine water within a flooded mine might significantly reduce the costs of mine closure and remediation. In the literature, the difficulties in evaluating the hydrodynamics of flooded mines are well described, although only few tracer tests in flooded mines have been published so far. Most tracer tests linked to mine water problems were related to either pollution of the aquifer or radioactive waste disposal and not the mine water itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Tracer tests as a mean of remediation procedures in mines; Isip:000233396400084; Times Cited: 0; ISI Web of Science Approved no  
  Call Number CBU @ c.wolke @ 7590 Serial 153  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: