|   | 
Details
   web
Records
Author Ueki, K.; Kotaka, K.; Itoh, K.; Ueki, A.
Title Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals Type Journal Article
Year 1988 Publication Journal of Fermentation Technology Abbreviated Journal
Volume 66 Issue 1 Pages
Keywords mine water treatment
Abstract (down) The use of an anaerobic digester slurry of cattle waste for the reclamation of acid mine water was examined. When the digester slurry was mixed with acid mine water, anaerobic digestion, including sulfate reduction and methanogenesis, was enhanced. In the mixture of acid mine water and the digester slurry, sulfate reduction proceeded without diminishing methanogenesis. The digester slurry and its supernatant (SDF-sup) showed a significant capacity to act as a strong alkaline reagent, and the pH of the acid mine water was markedly elevated by the addition of the digester slurry of SDF-sup even at the low ratio of 1% (v/v). Precipitation of heavy metals in the acid mine water occurred as the pH was elevated by the addition of SDF-sup. When the digester slurry was added at the ratio of 5% (v/v) to acid mine water which had been pretreated with SDF-sup, the rate of sulfate reduction increased with increasing the concentration of sulfate in the mixture up to about 1,400 mg·l-1. In acid mine water pretreated with SDF-sup and supplemented with the digester slurry at the ratio of 5% (v/v), the maximum amount of sulfate reduced within 20 d of incubation was about 1,000 mg·l-1, and the maximum rate of sulfate reduction was about 120 mg SO42-·l-1·d-1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0385-6380 ISBN Medium
Area Expedition Conference
Notes Potential availability of anaerobic treatment with digester slurry of animal waste for the reclamation of acid mine water containing sulfate and heavy metals; Amsterdam [u.a.] : Elsevier; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7036.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7036 Serial 75
Permanent link to this record
 

 
Author Kothe, E.
Title Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms Type Journal Article
Year 2005 Publication Chemie Der Erde-Geochemistry Abbreviated Journal
Volume 65 Issue Pages 7-27
Keywords mine water treatment
Abstract (down) The understanding of molecular mechanisms in the cycling of elements in general is essential to our alteration of current processes. One field where such geochemical element cycles are of major importance is the prevention and treatment of acid mine drainage waters (AMD) which are prone to occur in every anthropogenic, modified landscape where sulfidic rock material has been brought to the surface during mine operations. Microbiologically controlled production of AMD leads not only to acidification, but at the same time the dissolution of heavy metals makes them bioavailable posing a potential ecotoxicological risk. The water path then can contaminate surface and ground water resources which leads to even bigger problems in large catchment areas. The investigation of mechanisms in natural attenuation has already provided first ideas for applications of naturally occurring bioremediation schemes. Especially an improved soil microflora can enhance the natural attenuation when adapted microbes are applied to contaminated areas. Future schemes for plant extraction, control of water efflux by increasing evapotranspiration, and by subsequent land use with agricultural plants with biostabilization and phytosequestration potential will provide putative control measures. The mechanisms in parts of these processes have been evaluated and the resulting synthesis applied to derive a bioremediation plan using the former uranium mine in Eastern Thuringia as a case study. (c) 2005 Elsevier GrnbH. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Molecular mechanisms in bio-geo-interaactions: From a case study to general mechanisms; Wos:000233975000002; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16965 Serial 114
Permanent link to this record
 

 
Author Sierra-Alvarez, R.
Title Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors Type Journal Article
Year 2006 Publication Water Sci. Technol. Abbreviated Journal
Volume 54 Issue 2 Pages 179-185
Keywords mine water treatment
Abstract (down) The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed V with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 Mg Cu2+vertical bar(-1); 10 mg Ni2+vertical bar(-1), 10 mg Zn2+vertical bar(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation Cn rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors; Wos:000240449300024; Times Cited: 0; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 16943 Serial 106
Permanent link to this record
 

 
Author Juby, G.J.G.
Title Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process Type Journal Article
Year 1996 Publication Water Sa Abbreviated Journal
Volume 22 Issue 2 Pages 161-172
Keywords mine water treatment
Abstract (down) The South African mining industry discharges relatively small quantities of mine service water to the environment, but these effluents contribute substantially to the salt load of the receiving waters. The poor quality of service water also has significant cost implications on the mining operations. Of the two main types of mine service water encountered in the gold mining industry, the so-called calcium sulphate scaling types is found in the majority of cases. Preliminary testwork on this type of water using membrane desalination processes revealed that only the seeded reverse osmosis type of process showed promise. To overcome certain process problems and high operating costs with this system, a novel membrane desalination technique incorporating seeded technology, called the SPARRO (slurry precipitation and recycle reverse osmosis) process, was developed. The novel features of the new process included; a lower linear slurry velocity in the membrane tubes, a lower seed slurry concentration, a dual pumping arrangement to a tapered membrane stack, a smaller reactor and a modified seed crystal and brine blow-down system. Evaluation of the SPARRO process and its novel features, over a five-year period, confirmed its technical viability for desalinating calcium sulphate-scaling mine water. The electrical power consumption of the process was approximately half that of previous designs, significantly improving its efficiency. Membrane performance was evaluated and was generally unsatisfactory with both fouling and hydrolysis dominating at times, although operating conditions for the membranes were not always ideal. The precise cause(s) for the membrane degradation was not established, but a mechanism for fouling (based upon the presence of turbidity in the mine water) and a hypothesis fora possible cause of hydrolysis (alluding to the presence of radionuclides in the mine water) were proposed. Product water from the SPARRO process has an estimated gross unit cost (including capital costs) of 383 c/m(3) (1994).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Desalination of calcium sulphate scaling mine water: Design and operation of the SPARRO process; Wos:A1996uh88100009; Times Cited: 5; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 17168 Serial 86
Permanent link to this record
 

 
Author Masarczyk, J.; Hansson, C.H.; Solomon, R.L.; Hallmans, B.
Title Desalination Plant at Kwk-debiensko, Poland – Advanced Mine Drainage Water-treatment Engineering for Zero Discharge Type Journal Article
Year 1989 Publication Desalination Abbreviated Journal
Volume 75 Issue 1-3 Pages 259-287
Keywords mine water treatment
Abstract (down) The river water in Poland has, to a great extent, such a high salinity that it cannot be used as drinking water, agricultural or industrial water. A large environmental project is now under progress in Katowice, Poland, in order to eliminate the wastewater discharge from two coal mines — Debiensko and Budryk. The highly brackish water will be desalinated in a reverse osmosis plant, followed by vapor compression distillation with seed crystals (RCC), crystallization and sodium chloride drying. This zero discharge process will produce about 8,000 m3/d drinking water an 370 tonnes/d NaCl. The paper describes the design of the plant. Trial operation of pre-treatment and reverse osmosis in a pilot plant for design of the full-scale plant at Debiensko is described in a separate paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-9164 ISBN Medium
Area Expedition Conference
Notes Desalination Plant at Kwk-debiensko, Poland – Advanced Mine Drainage Water-treatment Engineering for Zero Discharge; Isi:A1989cf92100018; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 9786 Serial 28
Permanent link to this record