|   | 
Details
   web
Records
Author Ye, Z.H.; Whiting, S.N.; Qian, J.H.; Lytle, C.M.; Lin, Z.Q.; Terry, N.
Title Trace element removal from coal ash leachate by a 10-year-old constructed wetland Type Journal Article
Year 2001 Publication J. Environ. Qual. Abbreviated Journal
Volume 30 Issue 5 Pages 1710-1719
Keywords acid mine drainage; Alabama; ash; bioaccumulation; boron; cadmium; constructed wetlands; environmental analysis; environmental effects; iron; Jackson County Alabama; Juncus effusus; leachate; manganese; metals; pH; pollutants; pollution; remediation; soils; sulfur; trace elements; Typha latifolia; United States; vegetation; waste water; wetlands; Widows Creek; Widows Creek Steam Plant; zinc; Typha; Juncus 22, Environmental geology
Abstract (down) This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. ne trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e., >10 yr after construction).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2425 ISBN Medium
Area Expedition Conference
Notes Aug 1; Trace element removal from coal ash leachate by a 10-year-old constructed wetland; 2002-017274; References: 33; illus. incl. 2 tables United States (USA); file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/5703.pdf; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5703 Serial 76
Permanent link to this record
 

 
Author Arango, I.
Title Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems Type Book Whole
Year 2002 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage atmospheric precipitation benthic taxa bioremediation dissolved materials dissolved oxygen electron microscopy data Euglena mutabilis Green Valley Mine ICP mass spectra Indiana iron mass spectra metals microorganisms mines oxygen pH photochemistry photosynthesis pollution rain remediation sediments soils spectra temperature United States Vigo County Indiana water 22, Environmental geology
Abstract (down) Euglena mutabilis is an acidophilic, photosynthetic protozoan that forms benthic mats in acid mine drainage (AMD) channels. At the Green Valley mine, western Indiana, E. mutabilis resides in AMD measuring <4.2 pH, with high concentrations of dissolved constituents (up to 22.67 g/l). One of the main factors influencing E. mutabilis distribution is water temperature. The microbe forms thick (>1 mm), extensive mats during spring and fall, when water temperature is between 13 and 28 degrees C. During winter and summer, when temperatures are outside this range, benthic communities have a very patchy distribution and are restricted to areas protected from extreme temperature changes. E. mutabilis also responds to rapid increases in pH, which are associated with rainfall events. During these events pH can increase above 4.0, causing precipitation of Fe and Al oxy-hydroxides that cover the mats. The microbe responds by moving through the precipitates, due to phototaxis, and reestablishing the community at the sediment-water interface within 12 hours. The biological activities of E. mutabilis may have a beneficial effect on AMD systems by removing iron from effluent via oxygenic photosynthesis, and/or by internal sequestration. Photosynthesis by E. mutabilis contributes elevated concentrations of dissolved oxygen (DO), up to 17.25 mg/l in the field and up to 11.83 mg/l in the laboratory, driving oxidation and precipitation of reduced metal species, especially Fe (II), which are dissolved in the effluent. In addition, preliminary electro-microscopic and staining analyses of the reddish intracellular granules in E. mutabilis indicate that the granules contain iron, suggesting that E. mutabilis sequesters iron from AMD. Inductive coupled plasma analysis of iron concentration in AMD with and without E. mutabilis also shows that E. mutabilis accelerates the rate of Fe removal from the media. Whether iron removal is accelerated by internal sequestration of iron and/or by precipitation via oxygenic photosynthesis has yet to be determined. These biological activities may play an important role in the natural remediation of AMD systems.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Indiana State University, Place of Publication Terre Haute Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Evaluation of the beneficial effects of the acidophilic alga Euglena mutabilis on acid mine drainage systems; GeoRef; English; References: 39; illus. incl. 3 tables Approved no
Call Number CBU @ c.wolke @ 16491 Serial 476
Permanent link to this record
 

 
Author Lin, C.; Lu, W.; Wu, Y.
Title Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination Type Journal Article
Year 2005 Publication Australian Journal of Soil Research Abbreviated Journal
Volume 43 Issue 7 Pages 819-826
Keywords Contamination and remediation Irrigated agriculture Soil studies geographical abstracts: physical geography soils (71 5 14) international development abstracts: agriculture and rural development (74 1 8) ecological abstracts: terrestrial ecology (73 4 2) bioaccumulation irrigation agricultural soil acid mine drainage pH crop plant heavy metal China Far East Asia Eurasia
Abstract (down) Agricultural soils irrigated with acidic mine water from the Guangdong Dabaoshan Mine, China, were investigated. The pH of the soils could be as low as 3.9. However, most of the mineral acids introduced into the soils by irrigation were transformed to insoluble forms through acid buffering processes and thus temporarily stored in the soils. Different heavy metals exhibited different fraction distribution patterns, with Zn and Cu being mainly associated with organic matter and Pb being primarily bound to oxides (statistically significant at P = 0.05). Although the mean of exchangeable Cd was greatest among the Cd fractions, there was no statistically significant difference between the exchangeable Cd and the oxide-bound Cd (the 2nd greatest fraction) or between the exchangeable Cd and the carbonate-bound Cd (the 3rd greatest fraction). It was also found that there were generally good relationships between the concentrations of various Zn, Cu, Pb, and Cd fractions and pH, suggesting that a major proportion of each heavy metal in the soils was mainly derived from the acidic irrigation water. The results also show that the crops grown in these soils were highly contaminated by heavy metals, particularly Cd. The concentration of Cd in the edible portions of most crops was far in excess of the limits set in China National Standards for Vegetables and Fruits and this can be attributable to the extremely high transfer rate of Cd from the soils to the crops under the cropping system adopted in the study area. < copyright > CSIRO 2005.
Address C. Lin, College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China cxlin@scau.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-9573 ISBN Medium
Area Expedition Conference
Notes Agricultural soils irrigated with acidic mine water: Acidity, heavy metals, and crop contamination; 2828050; Australia 29; Geobase Approved no
Call Number CBU @ c.wolke @ 17496 Serial 314
Permanent link to this record
 

 
Author Anonymous
Title Type Book Whole
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 118 pp
Keywords abandoned mines; acid mine drainage; aquifer vulnerability; aquifers; arsenic; bibliography; bioremediation; chemical properties; chemical waste; chromium; constructed wetlands; decontamination; disposal barriers; ground water; grouting; industrial waste; metals; microorganisms; mines; mobility; phytoremediation; pollutants; pollution; programs; reclamation; remediation; sludge; soil treatment; soils; solvents; sorption; Superfund; surface water; tailings; toxic materials; waste disposal; waste disposal sites; water quality; wetlands 22, Environmental geology
Abstract (down)
Address
Corporate Author Thesis
Publisher Society for Mining, Metallurgy, and Exploration Place of Publication Littleton Editor
Language Summary Language Original Title
Series Editor Series Title Remediation of historical mine sites; technical summaries and bibliography Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0873351622 Medium
Area Expedition Conference
Notes Remediation of historical mine sites; technical summaries and bibliography; 1998-031431; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 6164 Serial 11
Permanent link to this record
 

 
Author Barton, C.D.; Karathanasis, A.D.
Title Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage Type Journal Article
Year 1998 Publication Environ Geosci Abbreviated Journal
Volume 5 Issue 2 Pages 43-56
Keywords acid mine drainage aerobic environment anaerobic environment attenuation chemical fractionation chemical properties concentration constructed wetlands controls degradation detection environmental analysis ferric iron goethite heavy metals iron jarosite Kentucky McCreary County Kentucky metals oxides pollutants pollution seepage soils solubility sulfates surface water United States water treatment wetlands X-ray diffraction data 22, Environmental geology
Abstract (down)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1075-9565 ISBN Medium
Area Expedition Conference
Notes Aerobic and anaerobic metal attenuation processes in a constructed wetland treating acid mine drainage; 2001-034195; References: 41; illus. incl. 1 table United States (USA); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16623 Serial 61
Permanent link to this record