|   | 
Details
   web
Records
Author Dempsey, B.A.; Jeon, B.-H.
Title Characteristics of sludge produced from passive treatment of mine drainage Type Journal Article
Year 2001 Publication Geochem.-Explor. Environ. Anal. Abbreviated Journal
Volume 1 Issue 1 Pages 89-94
Keywords acid mine drainage; aerobic environment; anaerobic environment; Appalachian Plateau; Appalachians; carbonate rocks; coagulation; compressibility; decontamination; density; drainage; filtration; geochemistry; Howe Bridge; Jefferson County Pennsylvania; limestone; mining geology; North America; passive systems; Pennsylvania; pH; pollution; ponds; rates; reclamation; sedimentary rocks; settling; sludge; slurries; suspended materials; United States; viscosity; wet packing density; wetlands; zeta-potential 22, Environmental geology
Abstract (up) In the 1994 paper by Brown, Skousen & Renton it was argued that settleability and wet-packing density were the most important physical characteristics of sludge from treatment of mine drainage. These characteristics plus zeta-potential, intrinsic viscosity, specific resistance to filtration, and coefficient of compressibility were determined for several sludge samples from passive treatment sites and for several sludge samples that were prepared in the laboratory. Sludge from passive systems had high packing density, low intrinsic viscosity, low specific resistance to filtration and low coefficient of compressibility compared to sludge that was produced after addition of NaOH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7873 ISBN Medium
Area Expedition Conference
Notes Feb.; Characteristics of sludge produced from passive treatment of mine drainage; 2002-008382; References: 29; illus. incl. 5 tables United Kingdom (GBR); GeoRef; English Approved no
Call Number CBU @ c.wolke @ 5734 Serial 57
Permanent link to this record
 

 
Author Aube, B.C.; Zinck, J.M.
Title Comparison of AMD treatment processes and their impact on sludge characteristics Type Journal Article
Year 1999 Publication Abbreviated Journal
Volume Issue Pages
Keywords acid mine drainage cost decontamination density discharge geochemistry hydrochemistry leaching lime metals mine dewatering neutralization pH pollution remediation sludge stability tailings toxicity viscosity waste disposal water treatment 22, Environmental geology
Abstract (up) Lime neutralisation for the treatment of acid mine drainage is one of the oldest water pollution control techniques practised by the mineral industry. Several advances have been made in the process in the last thirty years, particularly with respect to discharge concentrations and sludge density. However, the impact of different treatment processes on metal leachability and sludge handling properties has not been investigated. A study of treatment sludges sampled from various water treatment plants has shown that substantial differences can be related to the treatment process and raw water composition. This study suggests that sludge densities, excess alkalinity, long-term compaction properties, metal leachability, crystallinity and cost efficiency can be affected by the neutralisation process and specific process parameters. The study also showed that the sludge density and dewatering ability is not positively correlated with particle size as previously suggested in numerous studies. The treatment process comparisons include sludge samples from basic lime treatment, the conventional High Density Sludge (HDS) Process, and the Geco HDS Process.
Address
Corporate Author Thesis
Publisher Place of Publication Sudbury Editor
Language Summary Language Original Title
Series Editor Series Title Mining and the Environment II Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2002-060865; Sudbury '99; Mining and the environment II--Sudbury '99; L'exploitation miniere et l'environnement, Sudbury, ON, Canada, Sept. 13-17, 1999 References: 10; illus. incl. 6 tables; GeoRef; English Approved no
Call Number CBU @ c.wolke @ 16574 Serial 473
Permanent link to this record
 

 
Author Zinck, J.
Title Type Book Whole
Year 2006 Publication Abbreviated Journal
Volume Issue Pages 2604-2617
Keywords mine water lime treatment high density sludge process co-disposal sludge stability pond disposal backfill leaching mine reclamation
Abstract (up) Sludge management is an escalating concern as the inventory of sludge continues to grow through perpetual “pump and treat” of acidic waters at mine sites. Current sludge management practices, in general, are ad hoc and frequently do not adress long-term storage, and in some cases, long-term stability. While a variety of sludge disposal practices have been applied, many have not been fully investigated and monitoring data on the performance of these technologies is limited and not readily available. This paper discusses options for treatment sludge management including conventionale disposal technologies and options for reclamation of sludge areas.
Address
Corporate Author Thesis
Publisher Proceedings, International Conference of Acid Rock Drainage (ICARD) Place of Publication St. Louis Editor
Language Summary Language Original Title
Series Editor Series Title Icard 2006 Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Disposal, reprocessing and reuse options for acidic drainage treatment sludge; 2; AMD ISI | Wolkersdorfer; 2 Abb. Approved no
Call Number CBU @ c.wolke @ 17455 Serial 184
Permanent link to this record
 

 
Author Kuyucak, N.
Title Mining, the Environment and the Treatment of Mine Effluents Type Journal Article
Year 1998 Publication Int. J. Environ. Pollut. Abbreviated Journal
Volume 10 Issue 2 Pages 315-325
Keywords mine water treatment acid mine drainage high density sludge lime neutralization mining environment passive treatment sulfate-reducing bacteria
Abstract (up) The environmental impact of mining on the ecosystem, including land, water and air, has become an unavoidable reality. Guidelines and regulations have been promulgated to protect the environment throughout mining activities from start-up to site decommissioning. In particular, the occurrence of acid mine drainage (AMD), due to oxidation of sulfide mineral wastes, has become the major area of concern to many mining industries during operations and after site decommissioning. AMD is characterized by high acidity and a high concentration of sulfates and dissolved metals. If it cannot be prevented or controlled, it must be treated to eliminate acidity, and reduce heavy metals and suspended solids before release to the environment. This paper discusses conventional and new methods used for the treatment of mine effluents, in particular the treatment of AMD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4352 ISBN Medium
Area Expedition Conference
Notes Mining, the Environment and the Treatment of Mine Effluents; Isi:000078420600009; AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17477 Serial 56
Permanent link to this record
 

 
Author Coulton, R.; Bullen, C.; Hallett, C.
Title The design and optimisation of active mine water treatment plants Type Journal Article
Year 2003 Publication Land Contam. Reclam. Abbreviated Journal
Volume 11 Issue 2 Pages 273-280
Keywords sludge mine water treatment mine water active treatment precipitation iron manganese high density sludge sulphide Groundwater problems and environmental effects Pollution and waste management non radioactive manganese sulfide pollutant removal iron water treatment mine drainage
Abstract (up) This paper provides a 'state of the art' overview of active mine water treatment. The paper discusses the process and reagent selection options commonly available to the designer of an active mine water treatment plant. Comparisons are made between each of these options, based on technical and financial criteria. The various different treatment technologies available are reviewed and comparisons made between conventional precipitation (using hydroxides, sulphides and carbonates), high density sludge processes and super-saturation precipitation. The selection of reagents (quick lime, slaked lime, sodium hydroxide, sodium carbonate, magnesium hydroxide, and proprietary chemicals) is considered and a comparison made on the basis of reagent cost, ease of use, final effluent quality and sludge settling criteria. The choice of oxidising agent (air, pure oxygen, peroxide, etc.) for conversion of ferrous to ferric iron is also considered. Whole life costs comparisons (capital, operational and decommissioning) are made between conventional hydroxide precipitation and the high density sludge process, based on the actual treatment requirements for four different mine waters.
Address R. Coulton, Unipure Europe Ltd., Wonastow Road, Monmouth NP25 5JA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0967-0513 ISBN Medium
Area Expedition Conference
Notes The design and optimisation of active mine water treatment plants; 2530436; United-Kingdom 4; Geobase Approved no
Call Number CBU @ c.wolke @ 17513 Serial 59
Permanent link to this record