|   | 
Details
   web
Records
Author Burt, R.A.; Caruccio, F.T.
Title The effect of limestone treatments on the rate of acid generation from pyritic mine gangue Type Journal Article
Year 1986 Publication Environmental geochemistry and health Abbreviated Journal (down)
Volume 8 Issue Pages 8
Keywords mine water treatment
Abstract Surface water enters the Haile Gold Mine, Lancaster County, South Carolina by means of a small stream and is ponded behind a dam and in an abandoned pit. This water is affected by acidic drainage. In spite of the large exposures of potentially acid producing pyritic rock, the flux of acid to the water is relatively low. Nevertheless, the resulting pH values of the mine water are low (around 3.5) due to negligible buffering capacity. In view of the observed low release of acidity, the potential for acid drainage abatement by limestone ameliorants appears feasible. This study investigated the effects of limestone treatment on acid generation rates of the Haile mine pyritic rocks through a series of leaching experiments. Below a critical alkalinity threshold value, solutions of dissolved limestone were found consistently to accelerate the rate of pyrite oxidation by varying degrees. The oxidation rates were further accelerated by admixing solid limestone with the pyritic rock. However, after a period of about a month, the pyrite oxidation rate of the admixed samples declined to a level lower than that of untreated pyrite. Leachates produced by the pyrite and limestone mixtures contained little if any iron. Further, in the mixtures, an alteration of the pyrite surface was apparent. The observed behaviour of the treated pyrite appears to be related to the immersion of the pyrite grains within a high alkalinity/high pH environment. The high pH increases the rate of oxidation of ferrous iron which results in a higher concentration of ferric iron at the pyrite surface. This, in turn, increases the rate of pyrite oxidation. Above a threshold alkalinity value, the precipitation of hydrous iron oxides at the pyrite surface eventually outpaces acid generation and coats the pyrite surface, retarding the rate of pyrite oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-4042 ISBN Medium
Area Expedition Conference
Notes Sept; The effect of limestone treatments on the rate of acid generation from pyritic mine gangue; London: Chapman & Hall; file:///C:/Dokumente%20und%20Einstellungen/Stefan/Eigene%20Dateien/Artikel/7021.pdf; Opac Approved no
Call Number CBU @ c.wolke @ 7021 Serial 14
Permanent link to this record
 

 
Author Kauffman, J.W.
Title Microbiological Treatment Of Uranium-Mine Waters Type Journal Article
Year 1986 Publication Environ Sci Technol Abbreviated Journal (down)
Volume 20 Issue 3 Pages 243-248
Keywords mine water treatment
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Microbiological Treatment Of Uranium-Mine Waters; Wos:A1986a219600007; Times Cited: 26; ISI Web of Science Approved no
Call Number CBU @ c.wolke @ 14751 Serial 93
Permanent link to this record
 

 
Author Hause, D.R.; Willison, L.R.
Title Deep Mine Abandonment Sealing and Underground Treatment to Prelude Acid Mine Drainage Type Journal Article
Year 1986 Publication Abbreviated Journal (down)
Volume Issue Pages
Keywords in situ treatment sealing phosphate rock dust mine water acid mine water treatment beach area
Abstract Beth Energy's Mine 105W is located in Barbour County, West Virginia, near Buckhannon. The mine was opened by drifts updip into the Pittsburgh Seam in 1971 and operated until June, 1982. Most of the water which enters Mine 105W percolates down from previously mined areas in the Redstone Seam, Mine 101, which generally lies 38 feet above the Pittsburgh Seam. The quality of this water is good as it enters Mine 105W. While operating, the Mine 105W water was segregated by pumping. The bulk of the water was collected in sumps near the main area of infiltration from the Redstone Seam and was pumped to Gnatty Creek Portal where, because of the quality, it was minimally treated and discharged. The remainder of the water flowed to the original West Portal where it was occasionally treated with lime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Proceedings, 7th West Virginia Surface Mine Drainage Task Force Symposium Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 2; als Datei vorhanden 13 Abb.; VORHANDEN | AMD ISI | Wolkersdorfer Approved no
Call Number CBU @ c.wolke @ 17350 Serial 359
Permanent link to this record